Cite this paper
Brentan, B. , Ribeiro, L. , Luvizotto Jr., E. , Mendonça, D. and Guidi, J. (2014) Synthetic Reconstruction of Water Demand Time Series for Real Time Demand Forecasting.
Journal of Water Resource and Protection,
6, 1437-1443. doi:
10.4236/jwarp.2014.615132.
References
[1] Herrera, M., Torgo, L., Izqueirdo, J. and Perez-Garcia, R. (2010) Predictive Models for Forecasting Hourly Urban Water Demand. Journal of Hidrology, 387, 141-150.
http://dx.doi.org/10.1016/j.jhydrol.2010.04.005
[2] Adamowski, J. (2008) Peak Daily Water Demand Forecast Modeling Using Artificial Neural Networks. Journal of Water Resources Planning and Management, 134, 119-128.
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:2(119)
[3] Perry, P.F. (1981) Demand Forecasting in Water Supply Systems. Journal of the Hydraulics Division, 107, 1077-1087.
[4] Santos, C.C. (2011) Forecast of Water Demand in the Metropolitan Region of San Paul with Artificial Neural Networks and Socio-Environmental and Weather Conditions. Doctor Theses, EPUSP, San Paul.
[5] Silva, C.S. (2003) Multivariate Forecast of Water Demand in Urban Water Supply Systems. Previsao multivariada de demanda de água em sistemas urbanos de abastecimento. Doctor Theses, Unicamp, Campinas.
[6] An, A., Shan, C.C., Cercone, N. and Ziarko, W. (1995) Discovering Rules from Data for Water Demand Prediction. Proceedings in the Workshop on Machine Learning and Expert System (IJCAI’95), 187-202.
[7] Lucas, S.A., Coombes, P.J. and Sharma, A.K. (2010) The Impact of Diurnal Water Use Patterns, Demand Management and Rainwater Tanks on Water Supply Network Design. Water Science & Technology: Water Supply—WSTWS, 10, 69-80.
[8] Magnano, L. and Boland, J.W. (2007) Generation of Synthetic Sequences of Electricity Demand. Application at South Australia. Energy, 32, 2230-2243.
http://dx.doi.org/10.1016/j.energy.2007.04.001
[9] Luvizotto, E.J. (1992) Analytical Representation of Characteristic Curves of Hydraulic Machines for Use in Computer Simulations routines. MSc. Thesis, EPUSP, San Paul.