[1] Kowalski, A.M., Plastino, A. and Proto, A.N. (1995) Semiclassical Model for Quantum Dissipation. Physical Review E, 52, 165-177.
http://dx.doi.org/10.1103/PhysRevE.52.165
[2] Kowalski, A.M., Martin, M.T., Nuñez, J., Plastino, A. and Proto, A.N. (1988) Quantitative Indicator for Semiquantum Chaos. Physical Review A, 58, 2596-2599.
http://dx.doi.org/10.1103/PhysRevA.58.2596
[3] Sarris, C.M. and Proto, A.N. (2009) Information Entropy and Nonlinear Semiquantum Dynamics. International Journal of Bifurcation and Chaos, 19, 3473-3484.
[4] Alhassid, Y. and Levine, R.D. (1977) Entropy and Chemical Change. III. The Maximal Entropy (Subject to Constraints) Procedure as a Dynamical Theory. The Journal of Chemical Physics, 67, 4321-4339.
http://dx.doi.org/10.1063/1.434578
[5] Kowalski, A.M., Plastino, A. and Proto, A.N. (2002) Classical Limits. Physics Letters A, 297, 162-172.
http://dx.doi.org/10.1016/S0375-9601(02)00034-8
[6] Kowalski, A.M., Martin, M.T., Nuñez, J., Plastino, A. and Proto, A.N. (2000) Semiquantum Chaos and the Uncertainty Principle. Physica A: Statistical Mechanics and Its Applications, 276, 95-108.
http://dx.doi.org/10.1016/S0378-4371(99)00280-0
[7] Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[8] Fano, U. (1957) Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Reviews of Modern Physics, 29, 74-93.
http://dx.doi.org/10.1103/RevModPhys.29.74
[9] Jaynes, E.T. (1957) Information Theory and Statistical Mechanics. Physical Review, 106, 620-630.
http://dx.doi.org/10.1103/PhysRev.106.620
[10] Jaynes, E.T. (1957) Information Theory and Statistical Mechanics II. Physical Review, 108, 171-190.
http://dx.doi.org/10.1103/PhysRev.108.171
[11] Otero, D., Plastino, A., Proto, A.N. and Zannoli, G. (1982) Ehrenfest Theorem and Information Theory. Physical Review A, 26, 1209-1217.
http://dx.doi.org/10.1103/PhysRevA.26.1209
[12] Ballentine, L.E. (2001) Is Semiquantum Chaos Real? Physical Review E, 63, Article ID: 056204.
http://dx.doi.org/10.1103/PhysRevE.63.056204
[13] Blum, T.C. and Elze, H.T. (1996) Semiquantum Chaos in the Double Well. Physical Review E, 53, 3123-3133.
http://dx.doi.org/10.1103/PhysRevE.53.3123
[14] Bonilla, L.L. and Guinea, F. (1992) Collapse of the Wave Packet and Chaos in a Model with Classical and Quantum Degrees of Freedom. Physical Review A, 45, 7718-7728.
http://dx.doi.org/10.1103/PhysRevA.45.7718
[15] Cukier, R.I. and Morillo, M. (2000) Comparison between Quantum and Approximate Semiclassical Dynamics of an Externally Driven Spin-Harmonic Oscillator System. Physical Review A, 61, Article ID: 024103.
http://dx.doi.org/10.1103/PhysRevA.61.024103
[16] Pattayanak, A.K. and Schieve, W.C. (1994) Semiquantal Dynamics of Fluctuations: Ostensible Quantum Chaos. Physical Review Letters, 72, 2855-2858.
http://dx.doi.org/10.1103/PhysRevLett.72.2855
[17] Kowalski, A.M., Martin, M.T., Plastino, A., Proto, A.N. and Rosso, O.A. (2003) Wavelet Statistical Complexity Analysis of the Classical Limit. Physical Review A, 311, 189-191.
http://dx.doi.org/10.1016/S0375-9601(03)00470-5
[18] Cooper, F., Dawson, J.F., Meredith, D. and Shepard, H. (1994) Semiquantum Chaos. Physics Letters, 72, 1337-1340.
http://dx.doi.org/10.1016/S0375-9601(03)00470-5
[19] Kowalski, A.M., Plastino, A. and Proto, A.N. (2003) Classical Limit and Chaotic Regime in a Semi-Quantum Hamiltonian. International Journal of Bifurcation and Chaos, 13, 2315-2325.
http://dx.doi.org/10.1142/S0218127403007977
[20] Porter, M.A. (2001) Nonadiabatic Dynamics in Semiquantal Physics. Reports on Progress in Physics, 64, 1165-1189.
http://dx.doi.org/10.1088/0034-4885/64/9/203
[21] Kowalski, A.M., Plastino, A. and Proto, A.N. (1997) A Semiclassical Model for Quantum Dissipation. Physica A: Statistical Mechanics and Its Applications, 236, 429-447.
http://dx.doi.org/10.1016/S0378-4371(96)00379-2
[22] Porter, A.M. and Liboff, R.L. (2001) Vibrating Quantum Billiards on Riemannian Manifolds. International Journal of Bifurcation and Chaos, 11, 2305-2315.
[23] Plastino, A. and Sarris, C. (2014) Information Theory and Semi-Quantum MaxEnt: Semiquantum Physics. LAP Lambert Academic Press, Saarbrücken.
[24] Blumel, R. and Esser, B. (1994) Quantum Chaos in the Born-Oppenheimer Approximation. Physical Review Letters, 72, 3658-3661.
http://dx.doi.org/10.1103/PhysRevLett.72.3658
[25] Schanz, H. and Esser, B. (1997) Mixed Quantum-Classical versus Full Quantum Dynamics: Coupled Quasiparticle-Oscillator System. Physical Review A, 55, 3375-3387.
http://dx.doi.org/10.1103/PhysRevA.55.3375
[26] Ma, J. and Yuan, R.K. (1997) Semiquantum Chaos. Journal of the Physical Society of Japan, 66, 2302-2307.
http://dx.doi.org/10.1143/JPSJ.66.2302
[27] Sarris, C.M., Plastino, A. and Sassano, M.P. (2014) Peculiar Dynamics of Phase Space Embedded SU(2) Hamiltonians. International Journal of Sciences, 3, 32-44.
http://www.ijsciences.com/pub/article/379
[28] Cohen-Tannouudji, C., Diu, B. and Laloë, F. (1977) Quantum Mechanics. Wiley, New York.
[29] Aliaga, J., Otero, D., Plastino, A. and Proto, A.N. (1987) Constants of Motion, Accessible States and Information Theory. Physical Review A, 35, 2304-2311.
http://dx.doi.org/10.1103/PhysRevA.35.2304
[30] Merzbacher, E. (1963) Quantum Mechanics. Wiley, New York.
[31] Düering, E., Otero, D., Plastino, A. and Proto, A.N. (1987) General Dynamical Invariants for Time-Dependent Hamiltonians. Physical Review A, 35, 2314-2320.
http://dx.doi.org/10.1103/PhysRevA.35.2304
[32] Sarris, C.M., Caram, F. and Proto, A.N. (2004) Entropy Invariants of Motion. Physica A: Statistical Mechanics and Its Applications, 331, 125-139.
http://dx.doi.org/10.1016/j.physa.2003.07.008
[33] Sarris, C.M., Caram, F. and Proto, A.N. (2004) The Uncertainty Principle as Invariant of Motion for Time-Dependent Hamiltonians. Physics Letters A, 324, 1-8.
http://dx.doi.org/10.1016/j.physleta.2004.02.036
[34] Sarris, C.M. and Proto, A.N. (2005) Time-Dependent Invariants of Motion for Complete Sets of Non-Commuting Observables. Physica A: Statistical Mechanics and Its Applications, 348, 97-109.
http://dx.doi.org/10.1016/j.physa.2004.09.038
[35] Sarris, C.M. and Proto, A.N. (2007) Generalized Metric Phase Space for Quantum Systems and the Uncertainty Principle. Physica A: Statistical Mechanics and Its Applications, 377, 33-42.
http://dx.doi.org/10.1016/j.physa.2006.10.093
[36] Tung, W.K. (1985) Group Theory in Physics. World Scientific Publishing, Singapore.
http://dx.doi.org/10.1142/0097
[37] Sarris, C.M., Plastino, A. and Proto, A.N. (2013) Difficulties in Evaluating Lyapunov Exponents for Lie Governed Dynamics. Journal of Chaos, 2013, Article ID: 587548, 7 p.
http://dx.doi.org/10.1155/2013/587548
[38] Louisell, W. (1973) Quantum Statistical Properties of Radiation. Wiley, New York.
[39] Cooper, F., Dawson, J., Habib, S. and Ryne, R.D. (1998) Chaos in Time-Dependent Variational Approximation to Quantum. Physical Review E, 57, 1489-1498.
http://dx.doi.org/10.1103/PhysRevE.57.1489
[40] Cooper, F., Habib, S., Kluger, Y. and Mottola, E. (1997) Nonequilibrium Dynamics of Symmetry Breaking in λΦ? Theory. Physical Review D, 55, 6471-6503.
http://dx.doi.org/10.1103/PhysRevD.55.6471
[41] Aliaga, J., Crespo, G. and Proto, A.N. (1990) Thermodynamics of Squeezed States for the Kanai-Caldirola Hamiltonian. Physical Review A, 42, 4325-4335.
http://dx.doi.org/10.1103/PhysRevD.55.6471
[42] Aliaga, J., Crespo, G. and Proto, A.N. (1990) Non-Zero Temperature Coherent and Squeezed States for the Harmonic-Oscillator: The Time-Dependent Frequency Case. Physical Review A, 42, 618-626.
http://dx.doi.org/10.1103/PhysRevA.42.618
[43] Hirayama, M. (1991) SO(2,1) Structure of the Generalized Harmonic Oscillator. Progress of Theoretical Physics, 86, 343-354.
http://dx.doi.org/10.1143/ptp/86.2.343
[44] Cerveró, J.M. and Lejarreta, J.D. (1989) SO(2,1) Invariant Systems and the Berry Phase. Journal of Physics A: Mathematical and General, 22, L633-L666.
http://dx.doi.org/10.1088/0305-4470/22/14/001
[45] Aliaga, J., Otero, D., Plastino, A. and Proto, A.N. (1988) Quantum Thermodynamics and Information Theory. Physical Review A, 38, 918-929.
http://dx.doi.org/10.1103/PhysRevA.38.918
[46] Dattoli, G., Dipace, A. and Torre, A. (1986) Dynamics of the SU(1,1) Bloch Vector. Physical Review A, 33, 4387-4389.
http://dx.doi.org/10.1103/PhysRevA.33.4387