[1] Karlovich, Y.I. and Kravchenko, V.G. (1981) Singular Integral Equations with Non-Carleman Shift on an Open Contour. Differential Equations, 17, 2212-2223.
[2] Litvinchuk, G.S. (2000) Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Kluwer Academic Publishers, Dordrecht, Boston, London. http://dx.doi.org/10.1007/978-94-011-4363-9
[3] Kravchenko, V.G. and Litvinchuk, G.S. (1994) Introduction to the Theory of Singular Integral Operators with Shift. Kluwer Academic Publishers, Dordrecht, Boston, London. http://dx.doi.org/10.1007/978-94-011-1180-5
[4] Tarasenko, A., Karelin, A., Lechuga, G.P. and Hernández, M.G. (2010) Modelling Systems with Renewable Resources Based on Functional Operators with Shift. Applied Mathematics and Computation, 216, 1938-1944.
http://dx.doi.org/10.1016/j.amc.2010.03.023
[5] Karelin, O., Tarasenko, A. and Hernández, M.G. (2013) Application of Functional Operators with Shift to the Study of Renewable Systems When the Reproductive Processed Is Described by Integrals with Degenerate Kernels. Applied Mathematics (AM), 4, 1376-1380.
http://dx.doi.org/10.4236/am.2013.410186
[6] Duduchava, R.V. (1973) Unidimensional Singular Integral Operator Algebras in Spaces of Holder Functions with Weight. Proceedings of A. Razmadze Mathematical Institute, 43, 19-52. (In Russian)