NR  Vol.5 No.14 , November 2014
Regulation and Improvement of Cellulase Production: Recent Advances
ABSTRACT
Cellulases and hemicellulases are the main industrial sources from different microorganisms used to depolymerise plant biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. Cellulases are formed adaptively, and several positive (xyr1, Ace2, HAP2/3/5) and negative (Ace1, Cre1) components involved in this regulation are now known. In this review, we summarise current knowledge about how cellulase biosynthesis is regulated, and outline recent approaches and suitable strategies for facilitating the targeted improvement of cellulase production by genetic engineering. Trichoderma reesei is the preferred organism for producing industrial cellulases. However, a more efficient heterologous expression system for enzymes from different organism is needed to further improve its cellulase mixture. In addition those optimizations of the promoter and linker for hybrid genes can dramatically improve the efficiency of heterologous expression of cellulase genes.

Cite this paper
Ali, N. , Athar, M. , Khan, Y. , Idrees, M. and Ahmad, D. (2014) Regulation and Improvement of Cellulase Production: Recent Advances. Natural Resources, 5, 857-863. doi: 10.4236/nr.2014.514073.
References
[1]   Cardona, C.A. and Sanchez, C.J. (2007) Fuel Ethanol Production: Process Design Trends and Integration Opportunities. Bioresource Technology, 98, 2415-2457.
http://dx.doi.org/10.1016/j.biortech.2007.01.002

[2]   Balatinecz, J.J. and Kretschmann, D.E. (2001) Properties and Utilization of Poplar Wood. NRC, Research Press National Research, Council of Canada, ON KIA OR6, Canada, 277-291.

[3]   Mooney, C.A., Mansfield, S.D., Touhy, M.G. and Saddler, J.N. (1998) The Effect of Initial Pore Volume and Lignin Content on the Enzymatic Hydrolysis of Softwoods. Bioresource Technology, 64, 113-119.
http://dx.doi.org/10.1016/S0960-8524(97)00181-8

[4]   Wilkins, M.R., Widmer, W.W., Grohmann, K. and Cameron, R.G. (2007) Hydrolysis of Grapefruit Peel Waste with Cellulase and Pectinase Enzymes. Bioresource Technology, 98, 1596-1601.
http://dx.doi.org/10.1016/j.biortech.2006.06.022

[5]   Persson, I., Tjerneld, F. and Hahn-Hagerdal, B.B. (1991) Fungal Cellulolytic Enzyme Production: A Review. Process Biochemistry, 26, 65-74.
http://dx.doi.org/10.1016/0032-9592(91)80019-L

[6]   Wright, J.D., Power, A.J. and Douglas, L.J. (1986) Design and Parameter Evaluation of an Enzymatic Hydrolysis Process (Separation Hydrolysis and Fermentation). Biotechnology and Bioengineering, 17, 285-302.

[7]   Ferreira, S., Duarte, A.P., Ribeiro, M.H.L., Queiroz, J.A. and Domingues, F.C. (2009) Response Surface Optimization of Enzymatic Hydrolysis of Cistus ladanifer and Cytisus striatus for Bioethanol Production. Biochemical Engineering Journal, 45, 192-200.
http://dx.doi.org/10.1016/j.bej.2009.03.012

[8]   Lynd, L.R., et al. (2002) Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, 66, 506-577.
http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002

[9]   Esterbauer, H., Steiner, W., Labudova, I., Hermann, A. and Hayn, M. (1991) Production of Trichoderma Cellulase in Laboratory and Pilot Plant. Bioresource Technology, 36, 67-76.
http://dx.doi.org/10.1016/0960-8524(91)90099-6

[10]   Gadgil, N.J., Daginawala, H.F., Chakarabarti, T. and Khanna, P. (1995) Enhanced Cellulase Production by a Mutant of Trichoderma reesei. Enzyme and Microbial Technology, 17, 942-946.
http://dx.doi.org/10.1016/0141-0229(94)00131-A

[11]   Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C. and Pandey, A. (2012) Role and Significance of β-Glucosidases in the Hydrolysis of Cellulose for Bioethanol Production. Bioresource Technology, 127, 500-507.

[12]   Gritzali, M. and Brown, R.D.J. (1979) The Cellulase System of Trichoderma Relationships between Purified Extracellular Enzymes from Induced or Cellulose-Grown Cells. Advances in Chemistry, 181, 237-260.
http://dx.doi.org/10.1021/ba-1979-0181.ch012

[13]   Kubicek, C.P. and Penttila, M. (1998) Regulation of Production of Plant Polysaccharide Degrading Enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P., Eds., Trichoderma and Gliocladium, Taylor & Francis Ltd., London.

[14]   Mandels, M., Parrish, F.W. and Reese, E.T. (1962) Sophorose as an Inducer of Cellulase in Trichoderma viride. Journal of Bacteriology, 83, 400-408.

[15]   Ilmén, M., Thrane, C. and Penttila, M. (1996) The Glucose Repressor Genecre1 of Trichoderma: Isolation and Expression of a Full-Length and a Truncated Mutant Form. Molecular Genetics and Genomics, 251, 451-460.

[16]   Ilmén, M., Saloheimo, A., Onnela, M.L. and Penttila, M.E. (1997) Regulation of Cellulase Gene Expression in the Filamentous Fungus Trichoderma ressei. Applied and Environmental Microbiology, 63, 1298-1306.

[17]   Margolles-Clark, M., Ilmén, M. and Penttila, M. (1997) Expression Patterns of Ten Hemicellulase Genes of the Filamentous Fungus Trichoderma reesei on Various Carbon Sources. Journal of Biotechnology, 57, 167-179.
http://dx.doi.org/10.1016/S0168-1656(97)00097-7

[18]   Bower, B.S., Larenas, E.A. and Mitchinson, C. (2005) Exo-Endo Cellulase Fusion Protein. WO Patent No. WO2005093073.

[19]   Nyyssonen, E. and Keranen, S. (1995) Multiple Roles of the Cellulase CBHI in Enhancing Production of Fusion Antibodies by the Filamentous Fungus Trichoderma reesei. Current Genetics, 28, 71-79.
http://dx.doi.org/10.1007/BF00311884

[20]   Ilmén, M., Onnela, M.L., Klemsdal, S., Keranen, S. and Penttila, M. (1996) Functional Analysis of the Cellobiohydrolase I Promoter of the Filamentous Fungus Trichoderma reesei. Molecular Genetics and Genomics, 253, 303-314.

[21]   Wohlers, I., Stachelscheid, H., Borstlap, J., Zeilinger, K. and Gerlach, J.C. (2009) The Characterization Tool: A Knowledge-Based Stem Cell, Differentiated Cell, and Tissue Database with a Web-Based Analysis Front-End. Stem Cell Research, 3, 88-95.
http://dx.doi.org/10.1016/j.scr.2009.05.001

[22]   Long, C., Cheng, Y., Gan, L., Liu, J. and Long, M. (2013) Identification of a Genomic Region Containing a Novel Promoter Resistant to Glucose Repression and Over-Expression of β-Glucosidase Gene in Hypocrea orientalis EU7-22. International Journal of Molecular Sciences, 14, 8479-8490.
http://dx.doi.org/10.3390/ijms14048479

[23]   Kubicek, C.P., Mikus, M., Schuster, A., Schmoll, M. and Seiboth, B. (2009) Metabolic Engineering Strategies for the Improvement of Cellulase Production by Hypocrea jecorina. Biotechnology for Biofuels, 2, 19.
http://dx.doi.org/10.1186/1754-6834-2-19

[24]   Foreman, P.K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N.S., Goedegebuur, F., Houfek, T.D., England, G.J., Kelley, A.S., Meerman, H.J., Mitchell, T., Mitchinson, C., Olivares, H.A., Teunissen, P.J., Yao, J. and Ward, M. (2003) Transcriptional Regulation of Biomass-Degrading Enzymes in the Filamentous Fungus Trichoderma reesei. The Journal of Biological Chemistry, 278, 31988-31997.
http://dx.doi.org/10.1074/jbc.M304750200

[25]   Saloheimo, A., Aro, N., Ilmén, M. and Penttila, M. (2000) Isolation of the Ace1 Gene Encoding a Cys(2)-His(2) Transcription Factor Involved in Regulation of Activity of the Cellulase Promoter cbh1 of Trichoderma reesei. The Journal of Biological Chemistry, 275, 5817-5825.
http://dx.doi.org/10.1074/jbc.275.8.5817

[26]   Aro, N., Saloheimo, A., Ilmén, M. and Penttila, M. (2001) ACEII, a Novel Transcriptional Activator Involved in Regulation of Cellulase and Xylanase Genes of Trichoderma reesei. The Journal of Biological Chemistry, 276, 2430924314.
http://dx.doi.org/10.1074/jbc.M003624200

[27]   Stricker, A.R., Trefflinger, P., Aro, N., Penttila, M. and Mach, R.L. (2008) Role of Ace2 (Activator of Cellulases 2) within the xyn2 Transcriptosome of Hypocrea jecorina. Fungal Genetics and Biology, 45, 436-445.
http://dx.doi.org/10.1016/j.fgb.2007.08.005

[28]   Kubicek, C.P., Messner, R., Gruber, F., Mandels, M. and Kubicek-Pranz, E.M. (1993) Triggering of Cellulase Biosynthesis in Trichoderma reesei: Involvement of a Constitutive, Sophorose-Inducible, Glucoseinhibited β-Diglucoside Permease. The Journal of Biological Chemistry, 268, 19364-19368.

[29]   Zeilinger, S., Schmoll, M., Pail, M., Mach, R.L. and Kubicek, C.P. (2003) Nucleosome Transactions on the Hypocrea jecorina (Trichoderma reesei) Cellulase Promoter cbh2 Associated with Cellulase Induction. Molecular Genetics and Genomics, 270, 46-55.
http://dx.doi.org/10.1007/s00438-003-0895-2

[30]   Ilmén, M., Onnela, M.L., Klemsdal, S., Keranen, S. and Penttila, M. (1996) Functional Analysis of the Cellobiohydrolase I Promoter of the Filamentous Fungus Trichoderma reesei. Molecular Genetics and Genomics, 253, 303-314.

[31]   Zimmermann, F.K. and Scheel, I. (1977) Mutants of Saccharomyces cerevisiae Resistant to Carbon Catabolite Repression. Molecular Genetics and Genomics, 154, 75-82.
http://dx.doi.org/10.1007/BF00265579

[32]   Eveleigh, D.E. and Montenecourt, B.S. (1979) Increasing Yields of Extracellular Enzymes. Advances in Applied Microbiology, 25, 57-74.
http://dx.doi.org/10.1016/S0065-2164(08)70146-1

[33]   Sheir-Neiss, G. and Montenecourt, B.S. (1984) Characterization of the Secreted Cellulases of Trichoderma reesei Wild Type Mutants during Controlled Fermentations. Applied Microbiology and Biotechnology, 20, 46-53.
http://dx.doi.org/10.1007/BF00254645

[34]   Durand, H., Clanet, H. and Tiraby, G. (1988) Genetic Improvement of Trichoderma reesei for Large Scale Cellulase Production. Enzyme and Microbial Technology, 10, 341-346.
http://dx.doi.org/10.1016/0141-0229(88)90012-9

[35]   Ilmén, M., Thrane, C. and Penttila, M. (1996) The Glucose Repressor Gene Cre1 of Trichoderma: Isolation and Expression of a Full-Length and a Truncated Mutant Form. Molecular Genetics and Genomics, 251, 451-460.

[36]   Dowzer, C.E. and Kelly, J.M. (1991) Analysis of the CreA Gene, a Regulator of Carbon Catabolite Repression in Aspergillus nidulans. Molecular and Cellular Biology, 11, 5701-5709.

[37]   Todd, R.B., Lockington, R.A. and Kelly, J.M. (2000) The Aspergillus nidulans CreC Gene Involved in Carbon Catabolite Repression Encodes a WD40 Repeat Protein. Molecular Genetics and Genomics, 263, 561-570.
http://dx.doi.org/10.1007/s004380051202

[38]   Antonella A., Simona G and Vincenza F. (2007) Trichoderma reesei Homologue of Aspergillus nidualns CreB. Fungal Genetics Newsletter, 54, 98.

[39]   Lockington, R.A. and Kelly, J.M. (2001) Carbon Catabolite Repression in Aspergillus nidulans Involves Deubiquitination. Molecular Microbiology, 40, 1311-1321.
http://dx.doi.org/10.1046/j.1365-2958.2001.02474.x

[40]   Lockington, R.A. and Kelly, J.M. (2002) The WD40-Repeat Protein CreC Interacts with and Stabilizes the Deubiquitinating Enzyme CreB in Vivo in Aspergillus nidulans. Molecular Microbiology, 43, 1173-1182.
http://dx.doi.org/10.1046/j.1365-2958.2002.02811.x

[41]   Boase, N.A. and Kelly, J.M. (2004) A Role for CreD, a Carbon Catabolite Repression Gene from Aspergillus nidulans, in Ubiquitination. Molecular Microbiology, 53, 929-940.
http://dx.doi.org/10.1111/j.1365-2958.2004.04172.x

[42]   Polo, S. and Di Fiore, P.P. (2008) Finding the Right Partner: Science or ART. Cell, 135, 590-592.

[43]   Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. and Tansey, J.W. (2001) Regulation of Transcriptional Activation Domain Function by Ubiquitin. Science, 293, 1651-1653.
http://dx.doi.org/10.1126/science.1062079

[44]   Rolland, F., Winderickx, J. and Thevelein, J.M. (2002) Glucose-Sensing and -Signalling Mechanisms in Yeast. FEMS Yeast Research, 2, 183-201.
http://dx.doi.org/10.1111/j.1567-1364.2002.tb00084.x

[45]   Santangelo, G.M. (2006) Glucose Signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 253-282.
http://dx.doi.org/10.1128/MMBR.70.1.253-282.2006

[46]   Linhoff, M.W., Wright, K.L. and Ting, J.P. (1997) CCAAT-Binding Factor NF-Y and RFX Are Required for in Vivo Assembly of a Nucleoprotein Complex That Spans 250 Base Pairs: The Invariant Chain Promoter as a Model. Molecular and Cellular Biology, 17, 4589-4596.

[47]   Flipphi, M., van de Vondervoort, P.J., Ruijter, G.J., Visser, J., Arst Jr., H.N. and Felenbok, B. (2003) Onset of Carbon Catabolite Repression in Aspergillus nidulans. Parallel Involvement of Hexokinase and Glucokinase in Sugar Signalling. The Journal of Biological Chemistry, 278, 11849-11857.
http://dx.doi.org/10.1074/jbc.M209443200

 
 
Top