Decrease of the Penalty Parameter in Differentiable Penalty Function Methods

Show more

References

[1] R. Courant, “Variational Methods for the Solution of Problems of Equilibrium and Vibrations,” Bulletin of the American Mathematical Sociaty, Vol. 49, No. 1, 1943, pp. 1-23. doi:10.1090/S0002-9904-1943-07818-4

[2] A. V. Fiacco and G. P. McCormick, “Nonlinear Programming: Sequential Unconstrained Minimization Techniques,” Society for Industrial and Applied Mathematics, McLean, Virginia, 1990.

[3] D. M. Murray and S. J. Yakowitz, “Constrained Differential Dynamic Programming and Its Application to Multireservior Control,” Water Resources Research, Vol. 15, No. 5, 1979, pp. 1017-1027.
doi:10.1029/WR015i005p01017

[4] W. I. Zangwill, “Nonlinear Programming via Penalty Functions,” Man-agement Science, Vol. 13, No. 5, 1967, pp. 344-358. doi:10.1287/mnsc.13.5.344

[5] R. Fletcher, “A Class of Methods for Nonlinear Programming with Termination and Convergence Properties,” Integer and Nonlinear Pro-gramming, Amsterdam, 1970, pp. 157-173.

[6] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, “Nonlinear Pro-gramming: Theory and Algorithms,” 3rd Edition, Wiley, New York, 2006.

[7] C. Charalambous, “A Lower Bound for the Controlling Parameters of the Exact Penalty Functions,” Mathematical Programming, Vol. 15, No. 1, 1978, pp. 278-290. doi:10.1007/BF01609033

[8] A. R. Conn, “Constrained Optimization Using a Nondifferentiable Penalty Function,” SIAM Journal of Numerical Analysis, Vol. 10, No. 4, 1973, pp. 760-784. doi:10.1137/0710063

[9] G. D. Pillo and L. Grippo, “A Continuously Differentiable Exact Penalty Function for Nonlinear Programming Problems with Inequality Constraints,” SIAM Journal of Control and Optimization, Vol. 23, No. 1, 1985, pp. 72-84. doi:10.1137/0323007

[10] G. D. Pillo and L. Grippo, “Exact Penalty Functions in Constrained Optimization,” SIAM Journal of Control and Optimization, Vol. 27, No. 6, 1989, pp. 1333-1360. doi:10.1137/0327068

[11] J.-P. Dussault, “Improved Convergence Order for Augmented Penalty Algorithms,” Computational Optimization and Applications, Vol. 44, No. 3, 2009, pp. 373-383. doi:10.1007/s10589-007-9159-0

[12] A. L. Peressini, F. E. Sullivan and J. J. Uhl, “The Mathematics of Nonlinear Programming,” Springer-Verlag, New York, 1988.

[13] T. Pietrzykowski, “An Exact Potential Me-thod for Constrained Maxima,” SIAM Journal of Numer-ical Analysis, Vol. 6, No. 2, 1969, pp. 294-304. doi:10.1137/0706028

[14] M. Mongeau and A. Sartenaer, “Automatic Decrease of the Penalty Parameterin Exact Penalty Function Methods,” European Journal of Operational Research, Vol. 83, No. 3, 1995, pp. 686-699.
doi:10.1016/0377-2217(93)E0339-Y

[15] D. G. Luen-berger and Y. Ye, “Linear and Nonlinear Programming,” 3rd Edition, Springer, New York, 2008.

[16] M. J. D. Powell, “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,” Lecture Notes in Mathematics, Vol. 630, 1978, pp. 144-157.

[17] W. Hock and K. Schittkowski, “Test Examples for Nonlinear Programming Codes,” Journal of Optimization Theory and Applications, Vol. 30, No. 1, 1980, pp. 127-129.

[18] K. Schittkowski, “More Test Examples for Nonlinear Programming Codes (Lecture Notes in Economics and Mathematical Systems),” Springer, Berlin, 1987.

[19] Princeton Library of Nonlinear Programming Models, 2011. http://www.gamsworld.org/performance/princetonlib/princetonlib.htm