[1] Godfraind, C., Holmes, K.V. and Coutelier, J.-P. (1995) Thymus Involution Induced by Mouse Hepatitis Virus A59 in BALB/c Mice. Journal of Virology, 69, 6541-6547.
[2] Coutelier, J.-P., van der Logt, J.T., Heessen, F.W., Warnier, G. and Van Snick, J. (1987) IgG2a Restriction of Murine Antibodies Elicited by Viral Infections. Journal of Experimental Medicine, 165, 64-69.
http://dx.doi.org/10.1084/jem.165.1.64
[3] Lavi, E., Gilden, D.H., Wroblewska, Z., Rorke, L.B. and Weiss, S.R. (1984) Experimental Demyelination Produced by the A59 Strain of Mouse Hepatitis Virus. Neurology, 34, 597-603.
http://dx.doi.org/10.1212/WNL.34.5.597
[4] Mathieu, P.A., Gómez, K.A., Coutelier, J.-P. and Retegui, L.A. (2001) Identification of Two Liver Proteins Recognized by Autoantibodies Elicited in Mice Infected with Mouse Hepatitis Virus A59. European Journal of Immunology, 31, 1447-1455.
http://dx.doi.org/10.1002/1521-4141(200105)31:5<1447::AID-IMMU1447>3.0.CO;2-6
[5] Duhalde-Vega, M., Loureiro, M.E., Mathieu, P.A. and Retegui, L.A. (2006) The Peptide Specificities of the Autoantibodies Elicited by Mouse Hepatitis Virus A59. Journal of Autoimmunity, 27, 203-209.
http://dx.doi.org/10.1016/j.jaut.2006.09.003
[6] Duhalde-Vega, M., Aparicio, J.L. and Retegui, L.A. (2009) Fine Specificity of Autoantibodies Induced by Mouse Hepatitis Virus A59. Viral Immunology, 22, 287-294.
http://dx.doi.org/10.1089/vim.2009.0019
[7] Mathieu, P.A., Gómez, K.A., Coutelier, J.-P. and Retegui, L.A. (2004) Sequence Similarity and Structural Homologies Are Involved in the Autoimmune Response Elicited by Mouse Hepatitis Virus A59. Journal of Autoimmunity, 23, 117-126.
http://dx.doi.org/10.1016/j.jaut.2004.05.006
[8] Matzinger, P. (2002) The Danger Model: A Renewed Sense of Self. Science, 296, 301-305.
http://dx.doi.org/10.1126/science.1071059
[9] Duhalde-Vega, M. and Retegui, L.A. (2011) Uric Acid and HMGB1 Are Involved in the Induction of Autoantibodies Elicited in Mice Infected with Mouse Hepatitis Virus A59. Autoimmunity, 44, 631-640.
http://dx.doi.org/10.3109/08916934.2011.579927
[10] Aparicio, J.L., Duhalde-Vega, M., Loureiro, M.E. and Retegui, L.A. (2009) The Autoimmune Response Induced by Mouse Hepatitis Virus A59 Is Expanded by an Hepatotoxic Agent. International Immunopharmacology, 9, 627-631.
http://dx.doi.org/10.1016/j.intimp.2009.02.006
[11] Alexander, J., del Guercio, M.-F., Frame, B., Maewal, A., Sette, A., Nahm, M.H. and Newman, M.J. (2004) Development of Experimental Carbohydrate-Conjugate Vaccines Composed of Streptococcus pneumonia Capsular Polysaccharides and the Universal Helper T-Lymphocyte Epitope (PADRE). Vaccine, 22, 2362-2367.
http://dx.doi.org/10.1016/j.vaccine.2003.11.061
[12] Aparicio, J.L., Pena, C. and Retegui, L.A. (2011) Autoimmune Hepatitis-Like Disease in C57BL/6 Mice Infected with Mouse Hepatitis Virus A59. International Immunopharmacology, 11, 1591-1598.
http://dx.doi.org/10.1016/j.intimp.2011.05.020
[13] Carty, M. and Bowie, A.G. (2010) Recent Insights into the Role of Toll-Like Receptors in Viral Infection. Clinical and Experimental Immunology, 161, 397-406.
http://dx.doi.org/10.1111/j.1365-2249.2010.04196.x
[14] Connolly, D.J. and O’Neill, L.A.J. (2012) New Developments in Toll-Like Receptor Targeted Therapeutics. Current Opinion in Pharmacology, 12, 510-518.
http://dx.doi.org/10.1016/j.coph.2012.06.002
[15] Kawai, T. and Akira, S. (2010) The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors. Nature Immunology, 11, 373-384.
http://dx.doi.org/10.1038/ni.1863
[16] Kawai, T. and Akira, S. (2011) Toll-Like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity, 34, 637-650.
http://dx.doi.org/10.1016/j.immuni.2011.05.006
[17] Coutelier, J.-P., Coulie, P.G., Wauters, P., Heremans, H. and van der Logt, J.T.M. (1990) In Vivo Polyclonal B-Lymphocyte Activation Elicited by Murine Viruses. Journal of Virology, 64, 5383-5388.
[18] Gustot, T., Lemmers, A., Moreno, C., Nagy, N., Quertinmont, E., Nicaise, C., Franchimont, D., Louis, H., Devière, J. and Le Moine, O. (2006) Differential Liver Sensitization to Toll-Like Receptor Pathways in Mice with Alcoholic Fatty Liver. Hepatology, 43, 989-1000.
http://dx.doi.org/10.1002/hep.21138
[19] Hayashia, T., Graya, C.S., Chana, M., Tawataoa, R.I., Ronacherb, L., McGargillc, M.A., Dattad, S.K., Carsona, D.A. and Corrb, M. (2009) Prevention of Autoimmune Disease by Induction of Tolerance to Toll-Like Receptor 7. Proceedings of the National Academy of Sciences of the United States of America, 24, 2764-2769.
http://dx.doi.org/10.1073/pnas.0813037106
[20] Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
[21] Liu, G. and Zhao, Y. (2007) Toll-Like Receptors and Immune Regulation: Their Direct and Indirect Modulation on Regulatory CD4+ CD25+ T Cells. Immunology, 122, 149-156.
http://dx.doi.org/10.1111/j.1365-2567.2007.02651.x
[22] Mazaleuskaya, L., Veltrop, R., Ikpeze, N., Martin-Garcia, J. and Navas-Martin, S. (2012) Protective Role of Toll-Like Receptor 3-Induced Type I Interferon in Murine Coronavirus Infection of Macrophages. Viruses, 4, 901-923.
http://dx.doi.org/10.3390/v4050901
[23] He, J., Lang, G., Ding, S. and Li, L. (2013) Pathological Role of Interleukin-17 in Poly I:C-Induced Hepatitis. PLoS ONE, 8, e73909.
http://dx.doi.org/10.1371/journal.pone.0073909
[24] Walsh, K.B., Teijaro, J.R., Zuniga, E.I., Welch, M.J., Fremgen, D.M., Blackburn, S.D., von Tiehl, K.F., Wherry, E.J., Flavell, R.A. and Oldstone, M.B.A. (2012) Toll-Like Receptor 7 Is Required for Effective Adaptive Immune Responses that Prevent Persistent Virus Infection. Cell Host & Microbe, 11, 643-653.
http://dx.doi.org/10.1016/j.chom.2012.04.016
[25] Rajagopal, D., Paturel, C., Morel, Y., Uematsu, S., Akira, S. and Diebold, S.S. (2010) Plasmacytoid Dendritic Cell-Derived Type I Interferon Is Crucial for the Adjuvant Activity of Toll-Like Receptor 7 Agonists. Blood, 115, 1949- 1957.
http://dx.doi.org/10.1182/blood-2009-08-238543
[26] Jiang, W., Sun, R., Zhou, R., Wei, H. and Tian, Z. (2009) TLR-9 Activation Aggravates Concanavalin A-Induced Hepatitis via Promoting Accumulation and Activation of Liver CD4+ NKT Cells. Journal of Immunology, 182, 3768-3774.
http://dx.doi.org/10.4049/jimmunol.0800973
[27] Kaisho, T. (2012) Pathogen Sensors and Chemokine Receptors in Dendritic Cell Subsets. Vaccine, 30, 7652-7657.
http://dx.doi.org/10.1016/j.vaccine.2012.10.043
[28] Yang, H. and Tracey, K.J. (2010) Targeting HMGB1 in Inflammation. Biochimica et Biophysica Acta, 1799, 149-156.
http://dx.doi.org/10.1016/j.bbagrm.2009.11.019
[29] Holldack, J. (2014) Toll-Like Receptors as Therapeutic Targets for Cancer. Drug Discovery Today, 19, 379-382.
http://dx.doi.org/10.1016/j.drudis.2013.08.020