Back
 AJAC  Vol.5 No.15 , November 2014
Recovering Scrap Anode Copper Using Reactive Electrodialysis
Abstract: Despite functioning without major operational problems—copper electro-refining does not allow complete use of copper anodes, peaking at 85% of the copper anode in weight. Consequently, the remaining 15% of scrap copper must be recirculated into the copper smelting. The use of reactive electrodyalysis is a system capable of continuously electro-refining scrap, by using a stainless steel basket and a cationic exchanging membrane in order to increase production of copper cathodes at the same percentage; it currently today returns to the copper smelter. In terms of specific energy consumption, this process would use between 3 and 4 times the value of normal electro-refining.
Cite this paper: Cifuentes, G. , Hernández, J. and Guajardo, N. (2014) Recovering Scrap Anode Copper Using Reactive Electrodialysis. American Journal of Analytical Chemistry, 5, 1020-1027. doi: 10.4236/ajac.2014.515108.
References

[1]   Cifuentes, G., Vargas, C. and Simpson, J. (2009) Analysis of the Main Variables That Influence the Cathodic Rejection during Copper Electrorefining (Análisis de las principales variables que influyen en el rechazo catódico durante el electrorrefino del cobre). Revista de Metalurgia, 45, 228-236.
http://dx.doi.org/10.3989/revmetalm.0729

[2]   Davenport, G., King, M., Schlesinger, M. and Biswas, A.K. (2002) Extractive Metallurgy of Copper. 3rd Edition, Elsevier, Oxford.

[3]   Hartinger, L. (1990) Handbook of Effluent Treatment and Recycling for the Metal Finishing Industry. 2nd Edition, Carl Hanser, Munich.

[4]   Di Bari, G. (2000) Nickel Plating. Metal Finishing, 98, 270-288.
http://dx.doi.org/10.1016/S0026-0576(00)80334-7

[5]   Chena, S.-S., Lib, C.-W., Hsua, H.-D., Leeb, P.-C., Changa, Y.-M. and Yang, C.-H. (2009) Concentration and Purification of Chromate from Electroplating Wastewater by Two-Stage Electrodialysis Processes. Journal of Hazardous Materials, 161, 1075-1080.
http://dx.doi.org/10.1016/j.jhazmat.2008.04.106

[6]   Llorens, J. (1992) Membranes Technology (Tecnología de Membranas). Class Notes, University of Barcelona, Barcelona.

[7]   Schirg, P.G. (2010) Introduction to Theory and Practice in Technical Membranes (Introducción a la teoría y práctica de la Técnica de Membranas). PS Prozesstechnike GMBH.
www.membran.com

[8]   Koter, S. and Warszawski, A. (2000) Electromembrane Processes in Environment Protection. Polish Journal of Environmental Studies, 9, 45-56.

[9]   Xu, T.W. (2005) Ion Exchange Membranes: State of Their Development and Perspective. Journal of Membrane Science, 263, 1-29.
http://dx.doi.org/10.1016/j.memsci.2005.05.002

[10]   Baker, R.W. (2004) Chapter 10: Ionic Exchange Membranes in Electro-Dialysis Processes. In: Membrane Technology and Applications, 2nd Edition, John Wiley Sons, Ltd., Hoboken.
http://dx.doi.org/10.1002/0470020393.ch10

[11]   Bernardes, A.M., Siqueira, M.A. and Zoppas, J. (2013) Electrodialysis and Water Reuse: Novel Approaches—Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin-Heidelberg.

[12]   Herrera, C. (2003) Electrolytic Refining of Particulate Anodicshot (Refinación electrolítica de scrap anódico granallado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago.

[13]   Urra, C. (2003) Electrolytic Refining of Particulate Anodic Scrap (Refinación electrolítica de scrap anódico particulado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago.

[14]   Cifuentes, G., Simpson, J., Lobos, F., Briones, L. and Morales, A. (2009) Copper Electrowinning Based on Ractive Electrodialysis. Journal of the Chilean Chemical Society, 54, 334-338.
http://dx.doi.org/10.4067/S0717-97072009000400002

 
 
Top