Thermodynamic Fit Functions of the Two-Phase Fluid and Critical Exponents

Show more

References

[1] Stierstadt, K. (1989) Physik der Materie. VCH Verlag, Weilheim, Chapters 3.4, 10.2, 21.1

[2] Domb, C. (1996) The Critical Point. Taylor & Francis Ltd, London, Chapters 1, 2, 6.2.4

[3] Callen, H.B. (1960) Thermodynamics. John Wiley & Sons, Chapters 8.1-8.3, 10.4, 15, Equation (7.35).

[4] Grigull, U. and Schmidt, E. (1989) Properties of Water and Steam in SI Units. Springer-Verlag, Berlin, T,s-Diagram, p. 205, Equation 1.

[5] Wagner, W. and Pruss, A. (1993) International Equations for the Saturation Properties of Ordinary Water Substance. Revised According to the International Temperature Scale of 1990. Journal of Physical and Chemical Reference Data, 22, 783-787. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31 (2002), 387-535.

http://dx.doi.org/10.1063/1.555926

[6] Kohlrausch, F. (1996) Praktische Physik. Band 3, Teubner Verlag Stuttgart, Tabelle 3.12.

[7] Stanley, H.E. (1971) Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford, Chapters 1.1.1, 3.1, 3.4.2, 7.2.

[8] Liu, Y. and Suzuki, M. (1987) Some New Developments of the Scaling Theory of Transitient Phenomena. Phase Transitions, 10, 303-314.

http://dx.doi.org/10.1080/01411598708215447

[9] Kadanoff, L.P. (2009) More Is the Same; Phase Transitions and Mean Field Theories. Journal of Statistical Physics, 137, 777-797.

http://dx.doi.org/10.1007/s10955-009-9814-1

[10] Plascak, J.A. and Martins, P.H.L. (2013) Probability Distribution Function of the Order Parameter: Mixing Fields and Universality. Computer Physics Communications, 184, 259-269

http://dx.doi.org/10.1016/j.cpc.2012.09.014

[11] Elsner, A. (2012) Applied Thermodynamics of the Real Gas with Respect to the Thermodynamic Zeros of the Entropy and Internal Energy. Physica B: Condensed Matter, 407, 1055-1067.

http://dx.doi.org/10.1016/j.physb.2011.12.118

[12] Pethick, C.J. and Smith, H. (2004) Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge, Chapter 5, Cover Illustration.

[13] White, J.A. and Maccabee, B.S. (1971) Temperature Dependence of Critical Opalescence in Carbon Dioxide. Physical Review Letters, 26, 1468-1471.

http://dx.doi.org/10.1103/PhysRevLett.26.1468

[14] Widom, B. (1965) Equation of State in the Neighborhood of the Critical Point. Journal of Chemical Physics, 43, 3898-3905

http://dx.doi.org/10.1063/1.1696618

[15] Fisher, M.E. (1967) The Theory of Equilibrium Critical Phenomena. Reports on Progress in Physics, 30, 615-730.

http://dx.doi.org/10.1088/0034-4885/30/2/306

[16] Rehr, J.J. and Mermin, N.D. (1973) Revised Scaling Equation of State at the Liquid-Vapor Critical Point. Physical Review A, 8, 472, Equations 2.8 and 5.5.

[17] Heller, P. (1967) Experimental Investigations of Critical Phenomena. Reports on Progress in Physics, 30, 731-826.

http://dx.doi.org/10.1088/0034-4885/30/2/307

[18] Wagner, W. (1973) New Vapour Pressure Measurements for Argon and Nitrogen and a New Method for Establishing Rational Vapour Pressure Equations. Cryogenics, 13, 470-482.

http://dx.doi.org/10.1016/0011-2275(73)90003-9

[19] Stewart, R.B. and Jacobsen, R.T. (1989) Thermodynamic Properties of Argon. Journal of Physical and Chemical Reference Data, 18.

[20] Gilgen, R., Kleinrahm, R. and Wagner, W. (1994) Measurement and Correlation of the (Pressure, Density, Temperature) Relation of Argon, II. Saturated-Liquid and Saturated-Vapour Densities and Vapour Pressures Along the Entire Coexistence Curve. Journal of Chemical Thermodynamics, 26, 399-413.

http://dx.doi.org/10.1006/jcht.1994.1049

[21] Tegeler, Ch., Span, R. and Wagner, W. (1999) A New Equation of State for Argon Covering the Fluid Region for Temperatures from the Melting Line to 700 K at Pressures up to 1000 MPa. Journal of Physical and Chemical Reference Data, 28, 779-850.

http://dx.doi.org/10.1063/1.556037

[22] Span, R. and Wagner, W. (1996) A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, 1509-1596.

http://dx.doi.org/10.1063/1.555991

[23] Parola, A. and Reatto, L. (1995) Liquid State Theories and Critical Phenomena. Advances in Physics, 44, 211-298, Table 1, Chapter 5.5, Figure 15.

[24] Zhong, F. and Meyer, H. (1995) Density Equilibration near the Liquid-Vapor Critical Point of a Pure Fluid: Single Phase T > Tc. Physical Review E, 51, 3223-3241.

http://dx.doi.org/10.1103/PhysRevE.51.3223

[25] Rowlinson, J.S. (1959) Liquids and Liquid Mixtures. Butterworths Scientific Publications, London, Chapter 3.4.

[26] Mouritsen, O.G. (1984) Computer Studies on Phase Transitions and Critical Phenomena. Springer-Verlag, Amsterdam.

http://dx.doi.org/10.1007/978-3-642-69709-8

[27] Potton, J.A. and Lanchester, P.C. (1985) Analysis of Critical Specific Heat Data. Phase Transitions, 6, 43-57.

http://dx.doi.org/10.1080/01411598508219890

[28] Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics. Part 1, Pergamon Press, Oxford, 449.

[29] Levelt Sengers, J.M.H. and Greer, S.C. (1972) Thermodynamic Anomalies near the Critical Point of Steam. International Journal of Heat and Mass Transfer, 15, 1865-1886, Figure 4.

[30] Schomacker, H. (1973) Messungen der inneren Energie und der spezifischen isochoren Warmekapazitat in der Umgebung des kritischen Zustands von Wasser. Thesis Ruhr-Universitat Bochum, Tabelle 1 und 2.

[31] Milonni, P.W. and Eberly, J.H. (2010) Laser Physics. Wiley & Sons, Hoboken, Chapter 16.

http://dx.doi.org/10.1002/9780470409718