[1] Gutfleisch, O., Dal Toè, S., Herrich, M., Handstein, A. and Pratt, A. (2005) Hydrogen Sorption Properties of Mg-1 wt.% Ni-0.2 wt.% Pd Prepared by Reactive Milling. Journal of Alloys and Compounds, 404-406, 413-416. http://dx.doi.org/10.1016/j.jallcom.2004.09.083
[2] Yoonyoung, K., Eung-Kyu, L., Jae-Hyeok, S., Young, W.C. and Kyung, B.Y. (2006) Mechanochemical Synthesis and Thermal Descomposition of Mg(AlH4)2. Journal of Alloys and Compounds, 422, 283-287. http://dx.doi.org/10.1016/j.jallcom.2005.11.063
[3] Suryanarayana, C. (2001) Mechanical Alloying and Milling. Progress in Materials Science, 46, 1-184.
http://dx.doi.org/10.1016/S0079-6425(99)00010-9
[4] Gross, K.J., Chartouni, D., Leroy, E., Zuttel, A. and Schlapbach, L. (1998) Mechanically Milled Mg Composites for Hydrogen Storage: The Relationship between Morphology and Kinetics. Journal of Alloys and Compounds, 259-270.
[5] Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L. (1990) Nanocrystalline Metals Prepared by High-Energy Ball Milling. Metallurgical and Materials Transactions A, 21, 2333-2337.
http://dx.doi.org/10.1007/BF02646980
[6] Balema, V.P., Wiench, J.W., Pruski, M. and Pecharsky, V.K. (2002) Mechanically Induced Solid-State Generation of Phosphorus Ylides and the Solvent-Free Wittig Reaction. Journal of the American Chemical Society, 124, 6244-6245. http://dx.doi.org/10.1021/ja017908p
[7] Mamatha, M., Weidenthaler, C., Pommerin, A., Felderhoff, M. and Schüth, F. (2006) Comparative Studies of the Decomposition of Alanates Followed by in Situ XRD and DSC Methods. Journal of Alloys and Compounds, 416, 303- 314. http://dx.doi.org/10.1016/j.jallcom.2005.09.004
[8] Mamatha, M., Bogdanovic, B., Felderhoff, M., Pommerin, A., Schmidt, W. and Schüth, F. (2006) Mechanochemical Preparation and Investigation of Properties of Magnesium, Calcium and Lithium-Magnesium Alanates. Journal of Alloys and Compounds, 407, 78-86.
http://dx.doi.org/10.1016/j.jallcom.2005.06.069
[9] Lohstroh, W., Roth, A., Hahn, H. and Fichtner, M. (2010) Thermodynamic Effects in Nanoscale NaAlH4. ChemPhysChem, 11, 789-792. http://dx.doi.org/10.1002/cphc.200900767
[10] Balema, V.P. and Balema, L. (2005) Missing Pieces of the Puzzle or about Some Unresolved Issues in Solid State Chemistry of Alkali Metal Aluminohydrides. Physical Chemistry Chemical Physics, 7, 1310-1314. http://dx.doi.org/10.1039/b419490j
[11] Chaudhuri, S., Graetz, J., Ignatov, A., Reilly, J.J. and Muckerman, J.T. (2006) Understanding the Role of Ti in Reversible Hydrogen Storage as Sodium Alanate: A Combined Experimental and Density Functional Theoretical Approach. Journal of the American Chemical Society, 128, 11404-11415.
http://dx.doi.org/10.1021/ja060437s
[12] Von Colbe, J.M.B., Felderhoff, M., Bogdanovic, B., Schüth, F. and Weidenthaler, C. (2005) One-Step Direct Synthesis of a Ti-Doped Sodium Alanate Hydrogen Storage Material. Chemical Communications, 4732-4734. http://dx.doi.org/10.1039/b506502j
[13] Huot, J., Boily, S., Guther, V. and Schulz, R. (1999) Synthesis of Na3AlH6 and Na2LiAlH6 by Mechanical Alloying. Journal of Alloys and Compounds, 383, 304-306.
http://dx.doi.org/10.1016/S0925-8388(98)00875-5
[14] Kojima, Y., Kawai, Y., Hagab, T., Matsumoto, M. and Koiwai, A. (2007) Direct Formation of LiAlH4 by a Mechanochemical Reaction. Journal of Alloys and Compounds, 441, 189-191.
http://dx.doi.org/10.1016/j.jallcom.2006.08.343
[15] Balema, V.P., Pecharsky, V.K. and Dennis, K.W. (2000) Solid State Phase Transformations in LiAlH4 during High- Energy Ball-Milling. Journal of Alloys and Compounds, 313, 69-74.
http://dx.doi.org/10.1016/S0925-8388(00)01201-9
[16] Mamatha, M., Bogdanovic, B., Felderhoff, M., Pommerin, A., Schmidt, W., Schuth, F. and Weidenthaler, C. (2006) Mechanochemical Preparation and Investigation of Properties of Magnesium, Calcium and Lithium-Magnesium Alanates. Journal of Alloys and Compounds, 407, 78-86.
http://dx.doi.org/10.1016/j.jallcom.2005.06.069
[17] Vajo, J.J. and Olson, G.L. (2007) Hydrogen Storage in Destabilized Chemical Systems. Scripta Materialia, 56, 829- 834. http://dx.doi.org/10.1016/j.scriptamat.2007.01.002
[18] Zhang, Y., Zhang, W.-S., Wang, A.-Q., Sun, L.-X., Fan, M.-Q., Chu, H.-L., Sun, J.-C. and Zhang, T. (2007) LiBH4 Nanoparticles Supported by Disordered Mesoporous Carbon: Hydrogen Storage Performances and Destabilization Mechanisms. International Journal of Hydrogen Energy, 32, 3976-3980. http://dx.doi.org/10.1016/j.ijhydene.2007.04.010
[19] Liu, B.H. and Li, Z.P. (2009) A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction. Journal of Power Sources, 187, 527-534. http://dx.doi.org/10.1016/j.jpowsour.2008.11.032
[20] Miller, G.L. (1959) Corrosion by Chemicals, Gases and Liquids Metals. In: Finniston, H.M., Ed., Metallurgy of the Rarer Metals-6, Tantalum and Niobium, Butterworths Scientific Publications, London, 431-543.
[21] Park, K.Y., Kim, H.J. and Suh, Y.J. (2007) Preparation of Tantalum Nanopowders through Hydrogen Reduction of TaCl5 Vapor. Powder Technology, 172, 144-148.
http://dx.doi.org/10.1016/j.powtec.2006.11.011
[22] Rothenberger, K.S., Howard, B.H., Killmeyer, R.P., Enick, R.M., Bustamante, F., Ciocco, M.V., Morreale, B.D. and Buxbaum, E. (2003) Evaluation of Tantalum-Based Materials for Hydrogen Separation at Elevated Temperatures and Pressures. Journal of Membrane Science, 218, 19-37.
http://dx.doi.org/10.1016/S0376-7388(03)00134-0
[23] Porschke, E., Shaltiel, D., Klatt, K.H. and Wenzl, H. (1986) Hydrogen Desorption from Tantalum with Segregated Oxide Surface Layers. Journal of Physics and Chemistry of Solids, 47, 1003-1011.
http://dx.doi.org/10.1016/0022-3697(86)90116-2
[24] Esayed, A.Y. and Northwood, D.O. (1992) Metal Hydrides: A Review of Group V Transition Metals—Niobium, Vanadium and Tanalum. International Journal of Hydrogen Energy, 17, 41-52.
http://dx.doi.org/10.1016/0360-3199(92)90220-Q