AiM  Vol.4 No.15 , November 2014
Isolation and Characterization of a New Cyanobacterial Strain with a Unique Fatty Acid Composition

A new cyanobacterial strain was isolated and purified from salt Lake Balkhash, Kazakhstan. According to its morphological and ultrastructural characteristics, 16S rRNA sequence and the fatty acid profile, the strain has been classified as Cyanobacterium spp. and assigned as Cyanobacterium sp. IPPAS B-1200. The strain is characterized by a non-temperature inducible Δ9-desaturation system, and by high relative amounts of myristic (14:0—30%) and myristoleic (14:1Δ9—10%) acids. The total amount of C14 fatty acids reaches 40%, which is unusually high for cyanobacteria, and it has never been reported before. The remaining fatty acids are represented mainly by palmitic (16:0) and palmitoleic (16:1Δ9) acids (the sum reaches nearly 60%). Such a fatty acid composition, together with a relatively high speed of growth, makes this newly isolated strain a prospective candidate for biodiesel production.

Cite this paper: Sarsekeyeva, F. , Usserbaeva, A. , Zayadan, B. , Mironov, K. , Sidorov, R. , Kozlova, A. , Kupriyanova, E. , Sinetova, M. and Los, D. (2014) Isolation and Characterization of a New Cyanobacterial Strain with a Unique Fatty Acid Composition. Advances in Microbiology, 4, 1033-1043. doi: 10.4236/aim.2014.415114.

[1]   Schopf, J.W. (1993) Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life. Science, 260, 640-646.

[2]   Kufryk, G. (2013) Advances in Utilizing Cyanobacteria for Hydrogen Production. Advances in Microbiology, 3, 60-68.

[3]   Gao, Z., Zhao, H., Li, Z., Tan, X. and Lu, X. (2012) Photosynthetic Production of Ethanol from Carbon Dioxide in Genetically Engineered Cyanobacteria. Energy & Environmental Science, 5, 9857-9865.

[4]   Deng, M.-D. and Coleman, J.R. (1999) Ethanol Synthesis by Genetic Engineering in Cyanobacteria. Applied & Environmental Microbiology, 65, 2523-528.

[5]   Varman, A.M., Xiao, Y., Pakrasi, H.B. and Tang, Y.J. (2013) Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production. Applied Environmental Microbiology, 79, 3908-3914.

[6]   Nicole, E., Nozzi, N.E., Oliver, J.W.K. and Atsumi, S. (2013) Cyanobacteria as a Platform for Biofuel Production. Frontiers in Bioengineering and Biotechnology, 1, 7.

[7]   Robertson, D.E., Jacobson, S.A., Morgan, F., Berry, D., Church, G.M. and Afeyan, N.B. (2011) A New Dawn for Industrial Photosynthesis. Photosynthesis Research, 107, 269-277.

[8]   Tan, X., Yao, L., Gao, Q., Wang, W., Qi, F. and Lu, X. (2011) Photosynthesis Driven Conversion of Carbon Dioxide to Fatty Alcohols and Hydrocarbons in Cyanobacteria. Metabolic Engineering, 13, 169-176.

[9]   Murata, N., Wada, H. and Gombos, Z. (1992) Modes of Fatty-Acid Desaturation in Cyanobacteria. Plant & Cell Physiology, 33, 933-941.

[10]   Chi, X., Yang, Q., Zhao, F., Qin, S., Yang, Y., Shen, J. and Lin, H. (2008) Comparative Analysis of Fatty Acid Desaturases in Cyanobacterial Genomes. Comparative and Functional Genomics, 2008, Article ID: 284508, 25 p.

[11]   Lu, X. (2010) A Perspective: Photosynthetic Production of Fatty Acid-Based Biofuels in Genetically Engineered Cyanobacteria. Biotechnology Advances, 28, 742-746.

[12]   Parker, P.L., van Baalen, C. and Maurer, L. (1967) Fatty Acids in Eleven Species of Blue-Green Algae: Geochemical Significance. Science, 155, 707-708.

[13]   Shemet, V., Karduck, P., Hoven, H., Grushko, B., Fischer, W., Quadakkers, W.J., Carpenter, E.J., Harvey, H.R., Fry, B. and Capone, D.G. (1997) Biogeochemical Tracers of the Marine Cyanobacterium Trichodesmium. Deep Sea Research Part I: Oceanographic Research Papers, 44, 27-38.

[14]   Oren, A., Fattom, A., Padan, E. and Tietz, A. (1985) Unsaturated Fatty Acid Composition and Biosynthesis in Oscillatoria limnetica and Other Cyanobacteria. Archives of Microbiology, 141, 138-142.

[15]   Gombos, Z. and Murata, N. (1991) Lipids and Fatty Acids of Prochlorothrix hollandica. Plant & Cell Physiology, 32, 73-77.

[16]   Zarrouk, C. (1966) Contribution à l’étuded’unecyanophycée. Influence de Divers Facteurs Physiques et Chimiques Sur la Croissance et la Photosynthèse de Spirulina maxima. Ph.D. Thesis, Université De Paris, Paris.

[17]   Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S. and Richmond, A. (1982) On the Production of Spirulina Biomass: Effects of Environmental Factors and of the Population Density. Biomass, 2, 175-185.

[18]   Bertani, G. (1952) Studies on Lysogenesis. I. The Mode of Phage Liberation by Lysogenic Escherichia coli. Journal of Bacteriology, 62, 293-300.

[19]   Komárek, J. (2006) Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches. Algae, 21, 249-375.

[20]   Reynolds, E.S. (1963) The Use of Lead Citrate at High pH as an Electronopaque Stain in Electron Microscopy. Journal of Cell Biology, 17, 208-212.

[21]   Kiseleva, L.L., Serebriiskaya, T.S., Horvath, I., Vigh, L., Lyukevich, A.A. and Los, D.A. (2000) Expression of the Gene for the Δ9 Acyl-Lipid Desaturase in the Thermophilic Cyanobacterium. Journal of Molecular Microbiology and Biotechnology, 2, 331-338.

[22]   Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991) 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173, 697-703.

[23]   Nübel, U., Garcia-Pichel, F. and Muyzer, G. (1997) PCR Primers to Amplify 16S rRNA Genes from Cyanobacteria. Applied and Environmental Microbiology, 63, 3327-3332.

[24]   Zhang, Z., Schwartz, S., Wagner, L. and Miller, W. (2000) A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology, 7, 203-214.

[25]   Rippka, R. (1988) Isolation and Purification of Cyanobacteria. Methods in Enzymology, 167, 3-27.

[26]   van der Grinten, E., Pikkemaat, M.G., van den Brandhof, E.J., Stroomberg, G.J. and Kraak, M.H. (2010) Comparing the Sensitivity of Algal, Cyanobacterial and Bacterial Bioassays to Different Groups of Antibiotics. Chemosphere, 80, 1-6.

[27]   Komárek, J. and Anagnostidis, K. (1999) Cyanoprokaryota. I. Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D., Eds., Süßwasserflora von Mitteleuropa, Begründet von A. PascherBd. 19/3 Cyanoprokaryota. 1. Teil Chroococcales, Spektrum, Akademischer Verlag, Heidelberg & Berlin, 1-548.

[28]   Komárek, J., Kopecky, J. and Cepák, V. (1999) Generic Characters of the Simplest Cyanoprokaryotes, Cyanobium, Cyanobacterium and Synechococcus. Cryptogamie Algologie, 20, 209-222.

[29]   Tamura, K. and Nei, M. (1993) Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Molecular Biology and Evolution, 10, 512-526.

[30]   Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725-2729.

[31]   Shih, P.M., Wu, D., Latifi, A., Axen, S.D., Fewer, D.P., Talla, E., Calteau, A., Cai, F., Tandeau de Marsac, N., Rippka, R., Herdman, M., Sivonen, K., Coursin, T., Laurent, T., Goodwin, L., Nolan, M., Davenport, K.W., Han, C.S., Rubin, E.M., Eisen, J.A., Woyke, T., Gugger, M. and Kerfeld, C.A. (2013) Improving the Coverage of the Cyanobacterial Phylum Using Diversity-Driven Genome Sequencing. Proceedings of the National Academy of Sciences of the United States of America, 110, 1053-1058.

[32]   Simon, C. and Daniel, R. (2011) Metagenomic Analyses: Past and Future Trends. Applied and Environmental Microbiology, 77, 1153-1161.

[33]   Holton, R.W., Blecker, H.H. and Stevens, T.S. (1968) Fatty Acids in Blue-Green Algae: Possible Relation to Phylogenetic Position. Science, 160, 545-547.

[34]   Sherman, L.A. (1978) Differences in Photosynthesis-Associated Properties of Blue-Green Algae Synechococcus cedrorum Grown at 30°C and 40. Journal of Phycology, 14, 427-433.

[35]   Kenyon, C.N. and Stanier, R.Y. (1970) Possible Evolutionary Significance of Polyunsaturated Fatty Acids in Blue- Green Algae. Nature, 227, 1164-1166.

[36]   Chintalapati, S., Prakash, J.S., Gupta, P., Ohtani, S., Suzuki, I., Sakamoto, T., Murata, N. and Shivaji, S. (2006) A Novel Δ9 Acyl-Lipid Desaturase, DesC2, from Cyanobacteria Acts on Fatty Acids Esterified to the sn-2 Position of Glycerolipids. Biochemical Journal, 398, 207-214.

[37]   Nakamura, Y, Kaneko, T., Sato, S., Mimuro, M., Miyashita, H., Tsuchiya, T., Sasamoto, S., Watanabe, A., Kawashima, K., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Nakazaki, N., Shimpo, S., Takeuchi, C., Yamada, M. and Tabata, S. (2003) Complete Genome Structure of Gloeobacter violaceus PCC 7421, a Cyanobacterium That Lacks Thylakoids (Supplement). DNA Research, 10, 181-201. http://dx.doi.oeg/10.1093/dnares/10.4.181

[38]   Turner, S., Pryer, K.M., Miao, V.P. and Palmer, J.D. (1999) Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis. Journal of Eukaryotic Microbiology, 46, 327-338.

[39]   Rippka, R. and Cohen-Bazire, G. (1983) The Cyanobacteriales: A Legitimate Order Based on the Type Strain Cyanobacterium stanieri? Annales de l’Institut Pasteur/Microbiologie, 134, 21-36.