[1] Djurisic, A.B. (2002) Progress in the Room-Temperature Optical Functions of Semiconductors. Materials Science and Engineering: R: Reports, 38, 237-293.
http://dx.doi.org/10.1016/S0927-796X(02)00063-3
[2] Dong, L.F., Jiao, J., Tuggle, D.W., Petty, L.M. and Elliff, S.A. (2003) ZnO Nanowires Formed on Tungsten Substrates and Their Electron Field Emission Properties. Applied Physics Letters, 82, 1096-1098.
http://dx.doi.org/10.1063/1.1554477
[3] Zhu, B.L., Xie, C.S., Wang, A.H., Wu, J., Wu, R. and Liu, J. (2007) Laser Sintering ZnO Thick Films for Gas Sensor Application. Journal of Materials Science, 42, 5416-5420.
http://dx.doi.org/10.1007/s10853-006-0768-2
[4] Agarwal, G. and Speyer, R.F. (1998) Current Change Method of Reducing Gas Sensing Using ZnO Varistors. Journal of Electrochemical Society, 145, 2920-2925.
http://dx.doi.org/10.1149/1.1838737
[5] Kind, H., Yan, H., Messer, B., Law, M. and Yang, P. (2002) Nanowire Ultraviolet Photodetectors and Optical Switches. Advanced Materials, 14, 158-160.
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
[6] Byrappa, K., Subramani, A.K., Ananda, S., Lakanatharai, K.M., Sunitha, M.H., Basavalingu, B. and Soga, K. (2006) Impregnation of ZnO onto Activated Carbon under Hydrothermal Conditions and Its Photocatalytic Properties. Journal of Materials Science, 41, 1355-1362.
http://dx.doi.org/10.1007/s10853-006-7341-x
[7] Xu, F., Zhang, P., Navrotsky, A., Yuan, Z.Y., Ren, T.Z., Halasa, M. and Su, B.L. (2007) Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis, Surface Energy, and Photocatalytic Activity. Chemistry of Materials, 19, 56805686.
http://dx.doi.org/10.1021/cm071190g
[8] Cernigoj, U., Stangar, U.L., Trebse, P., Krasovec, U.O. and Gross, S. (2006) Photocatalytically Active TiO2 Thin Films Produced by Surfactant-Assisted Sol-Gel Processing. Thin Solid Films, 495, 327-332.
http://dx.doi.org/10.1016/j.tsf.2005.08.240
[9] Yu, H., Zhang, K. and Rossi, C. (2007) Theoretical Study on Photocatalytic Oxidation of VOCs Using Nano-TiO2 Photocatalyst. Journal of Photochemistry and Photobiology A, 188, 65-83.
http://dx.doi.org/10.1016/j.jphotochem.2006.11.021
[10] Lizama, C., Freer, J., Baeza, J. and Mansilla, H.D. (2002) Optimized Photodegradation of Reactive Blue 19 on TiO2 and ZnO Suspensions. Catalysis Today, 76, 235-246.
http://dx.doi.org/10.1016/S0920-5861(02)00222-5
[11] Peng, F., Wang, H., Yu, H. and Chen, S. (2006) Preparation of Aluminum Foil-Supported Nano-Sized, ZnO and Its Photocatalytic Phenol under Visible Light Irradiation. Materials Research Bulletin, 41, 2123-2129.
http://dx.doi.org/10.1016/j.materresbull.2006.03.029
[12] Ahmadipour, M., Hatami, M. and Rao, K.V. (2012) Preparation and Characterization of Nano-Sized (Mg(x)Fe(1-x)O/ SiO2) (x=0.1) Core-Shell Nanoparticles by Chemical Precipitation Method. Advances in Nanoparticles, 1, 37-43.
[13] Qiu, X.Q., Li, G.S., Sun, X.F., Li, L.P. and Fu, X.Z. (2008) Doping Effects of Co2+ Ions on ZnO Nanorods and Their Photocatalytic Properties. Nanotechnology, 19, Article ID: 215703.
http://dx.doi.org/10.1088/0957-4484/19/21/215703
[14] Marci, G., Augugliaro, V., López-Munoz, M.J., Martin, C., Palmisano, L., Rives, V., Schiavello, M., Tilley, R.J.D. and Venezia, A.M. (2001) Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 2. Surface, and Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid-Solid Regime. Journal of Physical Chemistry B, 105, 1033-1040.
http://dx.doi.org/10.1021/jp003173j
[15] Ullah, R. and Dutta, J. (2008) Photocatalytic Degradation of Organic Dyes with Manganese-Dopeded ZnO Nanoparticles. Journal of Hazardous Materials, 156, 194-200.
http://dx.doi.org/10.1016/j.jhazmat.2007.12.033
[16] Zhang, Q., Fan, W. and Gao, L. (2007) Anatase TiO2 Nanoparticles Immobilized on ZnO Tetrapods as a Highly Efficient and Easily Recyclable Photocatalyst. Applied Catalysis B: Environmental, 76, 168-173.
http://dx.doi.org/10.1016/j.apcatb.2007.05.024
[17] Anandan, S., Vinu, A., Lovely, K.L.P.S., Gokulakrishnan, N., Srinivasu, P., Mori, T., Murugesan, V., Sivamurugan, V. and Ariga, K. (2007) Photocatalytic Activity of La-Diped ZnO for the Degradation of Monocrotophos in Aqueous Suspension. Journal of Molecular Catalysis A: Chemical, 266, 149-157.
http://dx.doi.org/10.1016/j.molcata.2006.11.008
[18] Li, D. and Haneda, H. (2003) Photocatalysis of Sprayed Nitrogen-Containing Fe2O3-ZnO and WO3-ZnO Composite Powders in Gas-Phase. Journal of Photochemistry and Photobiology A: Chemistry, 160, 203-212.
http://dx.doi.org/10.1016/S1010-6030(03)00212-0
[19] Ekambaram, S., Likubo, Y. and Kudo, A. (2007) Combustion Synthesis and Photocatalytic Properties of Transition Metal-Incorporated ZnO. Journal of Alloys and Compounds, 433, 237-240.
http://dx.doi.org/10.1016/j.jallcom.2006.06.045
[20] Lin, H.F., Liao, S.C. and Hung, S.W. (2005) The dc Thermal Plasma Synthesis of ZnO Nanoparticles for Visible-Light Photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 174, 82-87.
http://dx.doi.org/10.1016/j.jphotochem.2005.02.015
[21] Nyffenegger, R.M., Craft, B., Shaaban, M., Gorer, S., Erley, G. and Penner, R.M. (1998) A Hybrid Electrochemical/ Chemical Synthesis of Zinc Oxide Nanoparticles and Optically Intrinsic Thin Films. Chemistry of Materials, 10, 11201129.
http://dx.doi.org/10.1021/cm970718m
[22] Therese, G.H.A. and Kamath, P.V. (2000) Electrochemical Synthesis of Metal Oxides and Hydroxides. Chemistry of Materials, 12, 1195-1204.
http://dx.doi.org/10.1021/cm990447a
[23] Byrappa, K., Subramani, A.K., Ananda, S., Rai, K.M.L., Dinesh, R. and Yoshimura, M. (2006) Photocatalytic Degradation of Rhodamine B Dye Using Hydrothermally Synthesized ZnO. Bulletin of Materials Science, 29, 433-438.
http://dx.doi.org/10.1007/BF02914073
[24] Belever, C., Adán, C. and Fernández-García, M. (2009) Photocatalytic Behaviour of Bi2MO6 Polymetalates for Rhodamine B Degradation. Catalysis Today, 143, 274-281.
http://dx.doi.org/10.1016/j.cattod.2008.09.011
[25] Carp, O., Huisman, C.L. and Rellar, A. (2004) Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 32, 33-177.
http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
[26] Sclafani, A. and Hermann, J.M. (1998) Influence of Metallic Silver and of Platinum-Silver Bimetallic Deposits on the Photocatalytic Activity of Titania (Anatase and Rutile) in Organic and Aqueous Media. Journal of Photochemistry and Photobiology A: Chemistry, 113, 118-188.
http://dx.doi.org/10.1016/S1010-6030(97)00319-5
[27] Rodriguez, J.A. and Fernández-García, M. (2007) Synthesis Proparties and Applications of Oxide Nanomaterials. John Wiley and Sons, Inc., New York, 335-351.
http://dx.doi.org/10.1002/0470108975
[28] Li, X., Han, X., Wang, W., Liu, X., Wang, Y. and Liu, X. (2012) Synthesis, Characterization and Photocatalytic Activity of Nb-Doped TiO2 Nanoparticles. Advanced Materials Research, 455, 110-111.
[29] Lakshmi, G.C., Ananda, S., Somashekar, R. and Ranganathaiah, C. (2012) Synthesis of ZnO/MgO Nanocomposites by Electrochemical Method for Photocatalytic Degradation Kinetics of Eosin Yellow Dye. International Journal of NanoScience and Nanotechnology, 3, 47-63.
[30] Patil, A.V., Dighavkar, C.G., Sonawane, S.K., Patil, S.J. and Borse, R.Y. (2010) Influence of Nb2O5 Doping on ZnO Thick Film Gas Sensors. Journal of Optoelectronics and Advanced Materials, 12, 125-1261.
[31] Pail, D.R., Patil, L.A. and Amalnerkar, D.P. (2007) Ethanol Gas Sensing Properties of Al2O3-Doped ZnO Thick Film Resistors. Bulletin of Materials Science, 30, 553-559.
http://dx.doi.org/10.1007/s12034-007-0086-6
[32] Wei, L., Shifu, C., Wei, Z. and Sujuan, Z. (2009) Titanium Dioxide Mediated Photocatalytic Degradation of Mathamidophos in Aqueous Phase. Journal of Hazardous Materials, 164, 154-160.
http://dx.doi.org/10.1016/j.jhazmat.2008.07.140