Back
 AM  Vol.5 No.19 , November 2014
On Some Questions of C. Ampadu Associated with the Quantum Random Walk
Abstract: We review (not exhaustively) the quantum random walk on the line in various settings, and propose some questions that we believe have not been tackled in the literature. In a sense, this article invites the readers (beginner, intermediate, or advanced), to explore the beautiful area of quantum random walks.
Cite this paper: Ampadu, C. (2014) On Some Questions of C. Ampadu Associated with the Quantum Random Walk. Applied Mathematics, 5, 3040-3066. doi: 10.4236/am.2014.519291.
References

[1]   Aharonov, Y., Davidovich, L. and Zagury, N. (1993) Quantum Random Walks. Physical Review A, 48, 1687.
http://dx.doi.org/10.1103/PhysRevA.48.1687

[2]   Hughes, B.D. (1995) Volume 1: Random Walks and Random Environments. In: Random Walks, Oxford University Press, Oxford.

[3]   Ambainis, A., Bach, E., Nayak, A., Vishwanath, A. and Watrous, J. (2001) One Dimensional Quantum Walks. Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, Heraklion, 6-8 July 2001, 50.

[4]   Nayak, A. and Vishwanath, A. (2000) Quantum Walk on the Line. arXiv: Quant-ph/0010117.

[5]   Childs, A.M., Farhi, E. and Gutmann, S. (2002) An Example of the Difference between Quantum and Classical Random Walks. Quantum Information Processing, 1, 35-43.
http://dx.doi.org/10.1023/A:1019609420309

[6]   Fahri, E. and Gutmann, S. (1998) Quantum Computation and Decision Trees. Physical Review A, 58, 915.

[7]   Meyer, D. (1996) From Quantum Cellular Automata to Quantum Lattice Gases. Journal of Statistical Physics, 85, 551-574.
http://dx.doi.org/10.1007/BF02199356

[8]   Strauch, F.W. (2006) Connecting the Discrete- and Continuous-Time Quantum Walks. Physical Review A, 74, Article ID: 030301.
http://dx.doi.org/10.1103/PhysRevA.74.030301

[9]   Chandrashekar, C.M. (2008) Generic Quantum Walk Using a Coin-Embedded Shift Operator. Physical Review A, 78, Article ID: 052309.
http://dx.doi.org/10.1103/PhysRevA.78.052309

[10]   Childs, A.M. (2010) On the Relationship between Continuous- and Discrete-Time Quantum Walk. Communications in Mathematical Physics, 294, 581-603.
http://dx.doi.org/10.1007/s00220-009-0930-1

[11]   Aharonov, D., et al. (2001) Quantum Walks on Graphs. Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, Heraklion, 6-8 July 2001, 50.

[12]   Bach, E., Coppersmith, S., Goldschen, M.P., Joynt, R. and Watrous, J. (2004) One Dimensional Quantum Walks with Absorbing Boundaries. Journal of Computer and System Sciences, 69, 562-592.
http://dx.doi.org/10.1016/j.jcss.2004.03.005

[13]   Dür, W., Raussendorf, R., Kendon, V.M. and Briegel, H.-J. (2002) Quantum Random Walks in Optical Lattices. Physical Review A, 66, Article ID: 052139.
http://dx.doi.org/10.1103/PhysRevA.66.052319

[14]   Kempe, J. (2005) Quantum Random Walks Hit Exponentially Faster. Probability Theory and Related Fields, 133, 215-235.
http://dx.doi.org/10.1007/s00440-004-0423-2

[15]   Konno, N. (2005) A New Type of Limit Theorems for the One-Dimensional Quantum Random Walk. Journal of the Mathematical Society of Japan, 57, 1179-1195.
http://dx.doi.org/10.2969/jmsj/1150287309

[16]   Konno, N., Namiki, T. and Soshi, T. (2004) Symmetry of Distribution for the One-Dimensional Hadamard Walk. Interdisciplinary Information Sciences, 10, 11-22.
http://dx.doi.org/10.4036/iis.2004.11

[17]   Mackay, T.D., Bartlett, S.D., Stephenson, L.T. and Sanders, B.C. (2002) Quantum Walks in Higher Dimensions. Journal of Physics A: Mathematical and General, 35, 2745-2753.
http://dx.doi.org/10.1088/0305-4470/35/12/304

[18]   Moore, C. and Russell, A. (2002) Quantum Walks on the Hypercubes, Randomization and Approximation Techniques in Computer Science. Lecture Notes in Computer Science, 2483, 164-178.

[19]   Travaglione, B.C. and Milburn, G.J. (2002) Implementing the Quantum Random Walk. Physical Review A, 65, Article ID: 032310.
http://dx.doi.org/10.1103/PhysRevA.65.032310

[20]   Yamasaki, T., Kobayashi, H. and Imai, H. (2003) Analysis of Absorbing Times of Quantum Walks. Physical Review A, 68, Article ID: 012302.
http://dx.doi.org/10.1103/PhysRevA.68.012302

[21]   Aharonov, D., Ambainis, A., Kempe, J. and Vazirani, U. (2001) Quantum Walks on Graphs. Proceedings of the 33rd STOC, New York, 50-59.

[22]   Shenvi, N., Kempe, J. and Whaley, K. (2003) Quantum Random-Walk Search Algorithm. Physical Review A, 67, Article ID: 052307.
http://dx.doi.org/10.1103/PhysRevA.67.052307

[23]   Ambainis, A. (2007) Quantum Walk Algorithm for Element Distinctness. SIAM Journal on Computing, 37, 210-239.
http://dx.doi.org/10.1137/S0097539705447311

[24]   Childs, A. and Goldstone, J. (2004) Spatial Search by Quantum Walk. Physical Review A, 70, Article ID: 022314.
http://dx.doi.org/10.1103/PhysRevA.70.022314

[25]   Kendon, V. (2006) A Random Walk Approach to Quantum Algorithms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 3407-3422.
http://dx.doi.org/10.1098/rsta.2006.1901

[26]   Gabris, A., Kiss, T. and Jex, I. (2007) Scattering Quantum Random-Walk Search with Errors. Physical Review A, 76, Article ID: 062315.
http://dx.doi.org/10.1103/PhysRevA.76.062315

[27]   Magniez, F., Nayak, A., Roland, J. and Santha, M. (2007) Search via Quantum Walk. Proceedings of the 33rd STOC, New York, 575-584.

[28]   Reitzner, D., Hillery, M., Feldman, E. and Buzek, V. (2009) Quantum Searches on Highly Symmetric Graphs. Physical Review A, 79, Article ID: 012323.
http://dx.doi.org/10.1103/PhysRevA.79.012323

[29]   Potocek, V., Gabris, A., Kiss, T. and Jex, I. (2009) Optimized Quantum Random-Walk Search Algorithms on the Hypercube. Physical Review A, 79, Article ID: 012325.
http://dx.doi.org/10.1103/PhysRevA.79.012325

[30]   Hein, B. and Tanner, G. (2009) Quantum Search Algorithms on the Hypercube. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 085303.
http://dx.doi.org/10.1088/1751-8113/42/8/085303

[31]   Hein, B. and Tanner, G. (2010) Quantum Search Algorithms on a Regular Lattice. Physical Review A, 82, Article ID: 012326.
http://dx.doi.org/10.1103/PhysRevA.82.012326

[32]   Travaglione, B.C. and Milburn, G.J. (2002) Implementing the Quantum Random Walk. Physical Review A, 65, Article ID: 032310.
http://dx.doi.org/10.1103/PhysRevA.65.032310

[33]   Dur, W., Raussendorf, R., Kendon, V. and Briegel, H.-J. (2002) Quantum Walks in Optical Lattices. Physical Review A, 66, Article ID: 052319.
http://dx.doi.org/10.1103/PhysRevA.66.052319

[34]   Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X. and Han, R. (2003) Experimental Implementation of Quantum Random-Walk Algorithm. Physical Review A, 67, Article ID: 042316.
http://dx.doi.org/10.1103/PhysRevA.67.042316

[35]   Ryan, C.A., Laforest, M., Boileau, J.C. and Laflamme, R. (2005) Experimental Implementation of a Discrete-Time Quantum Random Walk on an NMR Quantum-Information Processor. Physical Review A, 72, Article ID: 062317.
http://dx.doi.org/10.1103/PhysRevA.72.062317

[36]   Xue, P., Sanders, B.C., Blais, A. and Lalumiere, K. (2008) Quantum Walks on Circles in Phase Space via Superconducting Circuit Quantum Electrodynamics. Physical Review A, 78, Article ID: 042334.
http://dx.doi.org/10.1103/PhysRevA.78.042334

[37]   Witthaut, D. (2010) Quantum Walks and Quantum Simulations with Bloch-Oscillating Spinor Atoms. Physical Review A, 82, Article ID: 033602.
http://dx.doi.org/10.1103/PhysRevA.82.033602

[38]   Schreiber, A., Cassemiro, K.N., Potocek, V., Gabris, A., Mosley, P.J., Andersson, E., Jex, I. and Silberhorn, C. (2010) Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations. Physical Review Letters, 104, Article ID: 050502.
http://dx.doi.org/10.1103/PhysRevLett.104.050502

[39]   Xue, P., Sanders, B.C. and Leibfried, D. (2009) Quantum Walk on a Line for a Trapped Ion. Physical Review Letters, 103, Article ID: 183602.
http://dx.doi.org/10.1103/PhysRevLett.103.183602

[40]   Zhao, Z., Du, J., Li, H., Yang, T., Chen, Z.-B. and Pan, J.-W. (2002) Implement Quantum Random Walks with Linear Optics Elements. arXiv: Quant-ph/0212149.

[41]   Konno, N. (2002) Quantum Random Walks in One Dimension. Quantum Information Processing, 1, 345-354.
http://dx.doi.org/10.1023/A:1023413713008

[42]   Venagas-Andraca, S.E., Ball, J., Burnett, K. and Bose, S. (2005) Quantum Walks with Entangle Coins. New Journal of Physics, 7, 221.
http://dx.doi.org/10.1088/1367-2630/7/1/221

[43]   Bednarska, M., Grudka, A., Kurzynski, P., Luczak, T. and Wojcik, A. (2003) Quantum Walks on Cycles. Physics Letters A, 317, 21-25.
http://dx.doi.org/10.1016/j.physleta.2003.08.023

[44]   Omar, Y., Paunkovic, N., Sheridian, L. and Bose, S. (2006) Quantum Walk on a Line with Two Entangled Particles. Physical Review A, 74, Article ID: 042304.
http://dx.doi.org/10.1103/PhysRevA.74.042304

[45]   Oliveira, A., Portugal, R. and Donangelo, R. (2006) Decoherence in Two Dimensional Quantum Walks. Physical Review A, 74, Article ID: 012312.

[46]   Watabe, K., Kobayashi, N., Katori, M. and Konno, N. (2008) Limit Distributions of Two Dimensional Quantum Walks. Physical Review A, 77, Article ID: 062331.
http://dx.doi.org/10.1103/PhysRevA.77.062331

[47]   Adamczak, W., Andrew, K., Bergen, L., Ethier, D., Hernberg, P., Lin, J. and Tamon, C. (2007) Non-Uniform Mixing of Quantum Walk on Cycles. International Journal of Quantum Information, 5, 781.
http://dx.doi.org/10.1142/S0219749907003195

[48]   Mackay, T.D., Bartlett, S., Stephenson, L. and Sanders, B. (2002) Quantum Walks in Higher Dimensions. Journal of Physics A, 35, 2745-2753.
http://dx.doi.org/10.1088/0305-4470/35/12/304

[49]   Carneiro, I., Loo, M., Xu, X., Girerd, M., Kendon, V. and Knight, P. (2005) Entanglement in Coined Quantum Walks on Regular Graphs. New Journal of Physics, 7, 156.
http://dx.doi.org/10.1088/1367-2630/7/1/156

[50]   Romanelli, A., Sicardi-Schifino, A.C., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2004) Quantum Random Walk on the Line as Markovian Process. Physica A: Statistical Mechanics and Its Applications, 338, 395-405.
http://dx.doi.org/10.1016/j.physa.2004.02.061

[51]   Venegas-Andraca, S. (2012) Quantum Walks: A Comprehensive Review. Quantum Information Processing, 11, 1015-1106.
http://dx.doi.org/10.1007/s11128-012-0432-5

[52]   Shikano, Y. (2013) From Discrete Time Quantum Walk to Continuous Time Quantum Walk in Limit Distribution. Journal of Computational and Theoretical Nanoscience, 10, 1558-1570.
http://dx.doi.org/10.1166/jctn.2013.3097

[53]   Kempe, J. (2003) Quantum Random Walks: An Introductory Overview. Contemporary Physics, 44, 307-327.
http://dx.doi.org/10.1080/00107151031000110776

[54]   Kendon, V. (2007) Decoherence in Quantum Walks: A Review. Mathematical Structures in Computer Science, 17, 1169-1220.

[55]   Venegas-Andracas, S.E. (2008) Quantum Walks for Computer Scientists. Morgan and Claypool Publishers.
http://dx.doi.org/10.2200/S00144ED1V01Y200808QMC001

[56]   Konno, N. (2008) Quantum Walks. In: Franz, U. and Schurmann, M., Eds., Quantum Potential Theory, Springer-Verlag, Heidelberg, 309-452.

[57]   Konno, N. (2005) A Path Integral Approach for Disordered Quantum Walks in One Dimensions. Fluctuation and Noise Letters, 5, No. 4.
http://dx.doi.org/10.1142/S0219477505002987

[58]   Mackay, T.D., Bartlett, S.D., Stephanson, L.T. and Sanders, B.C. (2002) Quantum Walks in Higher Dimensions. Journal of Physics A: Mathematical and General, 35, 2745-2753.

[59]   Schijven, P, Kohlberger, J., Blumen, A. and Muelken, O. (2011) Transport Efficiency in Topologically Disordered Networks with Environmentally Induced Diffusion. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 215003.

[60]   Lavicka, H., Potocek, V., Kiss, T., Lutz, E. and Jex, I. (2011) Quantum Walk with Jumps. European Physical Journal D, 64, 119-129.
http://dx.doi.org/10.1140/epjd/e2011-20138-8

[61]   Abasto, D.F., Mohseni, M., Lloyd, S. and Zanardi, P. (2012) Exciton Diffusion Length in Complex Quantum Systems: The Effects of Disorder and Environmental Fluctuations on Symmetry-Enhanced Supertransfer. Philosophical Transactions of the Royal Society A, 370, 3750-3770.
http://dx.doi.org/10.1098/rsta.2011.0213

[62]   Obuse, H. and Kawakami, N. (2011) Topological Phases and Delocalization of Quantum Walks in Random Environments. Physical Review B, 84, Article ID: 195139.
http://dx.doi.org/10.1103/PhysRevB.84.195139

[63]   Chandrashekar, C.M. (2011) Quantum Walk through Lattice with Temporal, Spatial and Fluctuating Disordered Operations. arXiv:1103.2704.

[64]   Wootton, J. and Pachos, J. (2011) Bringing Order through Disorder: Localization of Errors in Topological Quantum Memories. Physical Review Letters, 107, Article ID: 030503.
http://dx.doi.org/10.1103/PhysRevLett.107.030503

[65]   Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Jex, I. and Silberhorn, C. (2011) Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Physical Review Letters, 106, Article ID: 180403.
http://dx.doi.org/10.1103/PhysRevLett.106.180403

[66]   Ahlbrecht, A., Scholz, V.B. and Werner, A.H. (2011) Disordered Quantum Walks in One Lattice Dimension. Journal of Mathematical Physics, 52, Article ID: 102201.
http://dx.doi.org/10.1063/1.3643768

[67]   Chandrashekar, C.M. (2011) Disordered Quantum Walk-Induced Localization of a Bose-Einstein Condensate. Physical Review A, 83, Article ID: 022320.
http://dx.doi.org/10.1103/PhysRevA.83.022320

[68]   Leung, G., Knott, P., Bailey, J. and Kendon, V. (2010) Coined Quantum Walks on Percolation Graphs. New Journal of Physics, 12, Article ID: 123018.
http://dx.doi.org/10.1088/1367-2630/12/12/123018

[69]   Monthus, C. and Garel, T. (2009) An Eigenvalue Method to Compute the Largest Relaxation Time of Disordered Systems. Journal of Statistical Mechanics: Theory and Experiment, 2009, 12017.
http://dx.doi.org/10.1088/1742-5468/2009/12/P12017

[70]   Yin, Y., Katsanos, D.E. and Evangelou, S.N. (2008) Quantum Walks on a Random Environment. Physical Review A, 77, Article ID: 022302.
http://dx.doi.org/10.1103/PhysRevA.77.022302

[71]   Mülken, O., Bierbaum, V. and Blumen, A. (2007) Localization of Coherent Exciton Transport in Phase Space. Physical Review E, 75, Article ID: 031121.
http://dx.doi.org/10.1103/PhysRevE.75.031121

[72]   Iglói, F., Karevski, D. and Rieger, H. (1998) Comparative Study of the Critical Behavior in One-Dimensional Random and Aperiodic Environments. The European Physical Journal B: Condensed Matter and Complex Systems, 5, 613-625.
http://dx.doi.org/10.1007/s100510050486

[73]   Godsil, C. and Severini, S. (2010) Control by Quantum Dynamics on Graphs. Physical Review A, 81, Article ID: 052316.
http://dx.doi.org/10.1103/PhysRevA.81.052316

[74]   Machida, T. (2013) Limit Distribution with a Combination of Density Functions for a 2-State Quantum Walk. Journal of Computational and Theoretical Nanoscience, 10, 1571-1578.
http://dx.doi.org/10.1166/jctn.2013.3090

[75]   Shikano, Y. and Katsura, H. (2010) Localization and Fractality in Inhomogeneous Quantum Walks with Self-Duality. Physical Review E, 82, Article ID: 031122.
http://dx.doi.org/10.1103/PhysRevE.82.031122

[76]   Linden, N. and Sharam, J. (2009) Inhomogeneous Quantum Walks. Physical Review A, 80, Article ID: 052327.
http://dx.doi.org/10.1103/PhysRevA.80.052327

[77]   Konno, N., ?uczak, T. and Segawa, E. (2013) Limit Measures of Inhomogeneous Discrete-Time Quantum Walks in One Dimension. Quantum Information Processing, 12, 33-53.
http://dx.doi.org/10.1007/s11128-011-0353-8

[78]   Konno, N. (2009) One-Dimensional Discrete-Time Quantum Walks on Random Environments. Quantum Information Processing, 8, 387-399.

[79]   Konno, N. (2010) Localization of an Inhomogeneous Discrete-Time Quantum Walk on the Line. Quantum Information Processing, 9, 405-418.

[80]   Ampadu, C. (2012) On an Inhomogeneous Quantum Walk. Unpublished.

[81]   Villagra, M., Nakanishi, M., Yamashita, S. and Nakashima, Y. (2012) Quantum Walk on the Line with Phase Parameters. IEICE Transactions on Information and Systems, E95.D, 722-730.

[82]   Ampadu, C. (2011) The Parametrized Grover Walk on the Line. Unpublished.

[83]   Ampadu, C. (2012) Asymptotic Entanglement in the Parametrized Hadamard Walk. International Journal of Quantum Information, 10, Article ID: 1250066.
http://dx.doi.org/10.1142/S0219749912500669

[84]   Ampadu, C. (2012) Limit Theorem for the Parametrized Grover Walk on the Line. Proceedings of AIP Conference, Vaxjo, 11-14 June 2012, 343.

[85]   Ampadu, C. (2012) On a Parametrized Quantum Walk in Random Environments. Unpublished.

[86]   McGettrick, M. (2010) One Dimensional Quantum Walks with Memory. Quantum Information & Computation, 10, 509-524.

[87]   Konno, N. and Machida, T. (2010) Limit Theorems for Quantum Walks with Memory. Quantum Information and Computation, 10, 1004-1017.

[88]   Inui, N., Konno, N. and Segawa, E. (2005) One-Dimensional Three-State Quantum Walk. Physical Review E, 72, Article ID: 056112.
http://dx.doi.org/10.1103/PhysRevE.72.056112

[89]   Brun, T.A., Carteret, H.A. and Ambainis, A. (2003) Quantum Walks Driven by Many Coins. Physical Review A, 67, Article ID: 052317.
http://dx.doi.org/10.1103/PhysRevA.67.052317

[90]   Venegas-Andreca, S.E., Ball, J.L., Burnett, K. and Bose, S. (2005) Quantum Walks with Entangled Coins. New Journal of Physics, 7, 221.

[91]   Segawa, E. and Konno, N. (2008) Limit Theorems for Quantum Walks Driven by Many Coins. International Journal of Quantum Information, 6, 1231-1243.

[92]   Ampadu, C. (2011) Limit Theorems for the Grover Walk without Memory. arXiv:1108.4149.

[93]   Brun, T.A., Carteret, H.A. and Ambainis, A. (2003) Quantum Random Walks with Decoherent Coins. Physical Review A, 67, Article ID: 032304.
http://dx.doi.org/10.1103/PhysRevA.67.032304

[94]   Liu, C. and Pentulante, N. (2011) Asymptotic Evolution of Quantum Walks on the N Cycle Subject to Decoherence on Both the Coin and Position Degrees of Freedom. Physical Review A, 84, Article ID: 012317.
http://dx.doi.org/10.1103/PhysRevA.84.012317

[95]   Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Jex, I. and Silberhorn, C. (2011) Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Physical Review Letters, 106, Article ID: 180403.
http://dx.doi.org/10.1103/PhysRevLett.106.180403

[96]   Romanelli, A. and Hernandez, G. (2011) Quantum Walks: Decoherence and Coin Flipping Games. Physica A: Statistical Mechanics and Its Applications, 390, 1209-1220.

[97]   Srikanth, R., Banerjee, S. and Chandrashekar, C.M. (2010) Quantumness in Decoherent Quantum Walk Using Measurement-Induced Disturbance. Physical Review A, 81, Article ID: 062123.
http://dx.doi.org/10.1103/PhysRevA.81.062123

[98]   Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A. and White, A.G. (2010) Discrete Single-Photon Quantum Walks with Tunable Decoherence. Physical Review Letters, 104, Article ID: 153602.
http://dx.doi.org/10.1103/PhysRevLett.104.153602

[99]   Annabestani, M., Akhtarshenas, S.J. and Abolhassani, M.R. (2010) Tunneling Effects in a One-Dimensional Quantum Walk. arXiv: 1004.4352.

[100]   Gönülol, M., Aydiner, E. and Müstecapl?oglu, Ö.E. (2009) Decoherence in Two-Dimensional Quantum Random Walks with Traps. Physical Review A, 80, Article ID: 022336.
http://dx.doi.org/10.1103/PhysRevA.80.022336

[101]   Liu, C. and Petulante, N. (2010) Quantum Random Walks on the N Cycle Subject to Decoherence on the Coin Degree of Freedom. Physical Review E, 81, Article ID: 031113.
http://dx.doi.org/10.1103/PhysRevE.81.031113

[102]   Xue, P., Sanders, B.C., Blais, A. and Lalumière, K. (2008) Quantum Walks on Circles in Phase Space via Superconducting Circuit Quantum Electrodynamics. Physical Review A, 78, Article ID: 042334.
http://dx.doi.org/10.1103/PhysRevA.78.042334

[103]   Abal, G., Donangelo, R., Severo, F. and Siri, R. (2007) Decoherent Quantum Walks Driven by a Generic Coin Operation. Physica A, 387, 335-345.
http://dx.doi.org/10.1016/j.physa.2007.08.058

[104]   Maloyer, O. and Kendon, V. (2007) Decoherence vs. Entanglement in Coined Quantum Walks. New Journal of Physics, 9, 87.
http://dx.doi.org/10.1088/1367-2630/9/4/087

[105]   Kosík, J., Buzek, V. and Hillery, M. (2006) Quantum Walks with Random Phase Shifts. Physical Review A, 74, Article ID: 022310.
http://dx.doi.org/10.1103/PhysRevA.74.022310?

[106]   Salimi, S. and Radgohar, R. (2006) Mixing and Decoherence in Continuous-Time Quantum Walks on Cycles. Quantum Information and Computation, 6, 263-276.

[107]   Solenov, D. and Fedichkin, L. (2006) Non-Unitary Quantum Walks on Hyper-Cycles. Physical Review A, 73, Article ID: 012308.
http://dx.doi.org/10.1103/PhysRevA.73.012308

[108]   Ryan, C.A., Laforest, M., Boileau, J.C. and Laflamme, R. (2005) Experimental Implementation of Discrete Time Quantum Random Walk on an NMR Quantum Information Processor. Physical Review A, 72, Article ID: 062317.
http://dx.doi.org/10.1103/PhysRevA.72.062317

[109]   Algaic, G. and Russell, A. (2005) Decoherence in Quantum Walks on the Hypercube. Physical Review A, 72, Article ID: 062304.
http://dx.doi.org/10.1103/PhysRevA.72.062304

[110]   Brun, T.A., Carteret, H.A. and Ambainis, A. (2003) The Quantum to Classical Transition for Random Walks. Physical Review Letters, 91, Article ID: 130602.
http://dx.doi.org/10.1103/PhysRevLett.91.130602

[111]   Lopez, C.C. and Paz, J.P. (2003) Phase-Space Approach to the Study of Decoherence in Quantum Walks. Physical Review A, 68, Article ID: 052305.
http://dx.doi.org/10.1103/PhysRevA.68.052305

[112]   Dür, W., Raussendorf, R., Kendon, V.M. and Briegel, H.-J. (2002) Quantum Random Walks in Optical Lattices. Physical Review A, 66, Article ID: 052319.
http://dx.doi.org/10.1103/PhysRevA.66.052319

[113]   Solenov, D. and Fedichkin, L. (2006) Continuous-Time Quantum Walks on a Cycle Graph. Physical Review A, 73, Article ID: 012313.
http://dx.doi.org/10.1103/PhysRevA.73.012313

[114]   Yin, Y., Katsanos, D.E. and Evangelou, S.N. (2008) Quantum Walks on a Random Environment. Physical Review A, 77, Article ID: 022302.
http://dx.doi.org/10.1103/PhysRevA.77.022302

[115]   Annabestani, M., Akhtarshenas, S.J. and Abolhassani, M.R. (2010) Decoherence in a One-Dimensional Quantum Walk. Physical Review A, 81, Article ID: 032321.
http://dx.doi.org/10.1103/PhysRevA.81.032321

[116]   Romanelli, A., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2005) Decoherence in the Quantum Walk on the Line. Physica A: Statistical Mechanics and Applications, 347, 137-152.

[117]   Romanelli, A., Schifino, A.C.S., Abal, G., Siri, R. and Donangelo, R. (2003) Markovian Behavior and Constrained Maximization of the Entropy in Chaotic Quantum Systems. Physics Letters A, 313, 325-329.

[118]   Romanelli, A., Sicardi-Schifino, A.C., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2004) Quantum Random Walk on the Line as a Markovian Process. Physica A: Statistical Mechanics and Applications, 338, 395-405.

[119]   Ampadu, C. (2012) Brun-Type Formalism for Decoherence in Two Dimensional Quantum Walks. Communications in Theoretical Physics, 57, 41-55.

[120]   Fan, S.M., Feng, Z.Y., Xiong, S. and Yang, W.-S. (2011) Convergence of Quantum Random Walks with Decoherence. Physical Review A, 84, Article ID: 042317.
http://dx.doi.org/10.1103/PhysRevA.84.042317

[121]   Correa, L.A., Valido, A.A. and Alonso, D. (2012) Asymptotic Discord and Entanglement of Non-Resonant Harmonic Oscillators in an Equilibrium Environment. Physical Review A, 86, Article ID: 012110.
http://dx.doi.org/10.1103/PhysRevA.86.012110

[122]   Liu, C. (2012) Asymptotic Distributions of Quantum Walks on the Line with Two Entangled Coin. Quantum Information Processing, 11, 1193-1205.
http://dx.doi.org/10.1007/s11128-012-0361-3

[123]   Jakóbczyk, L., Olkiewicz, R. and Zaba, M. (2011) Asymptotic Entanglement of Two Atoms in Squeezed Light Field. Physical Review A, 83, Article ID: 062322.
http://dx.doi.org/10.1103/PhysRevA.83.062322

[124]   Benatti, F. (2011) Asymptotic Entanglement and Lindblad Dynamics: A Perturbative Approach. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 155303.
http://dx.doi.org/10.1088/1751-8113/44/15/155303

[125]   Salimi, S. and Yosefjani, R. (2012) Asymptotic Entanglement in 1D Quantum Walks with a Time-Dependent Coined. International Journal of Modern Physics B, 26, Article ID: 1250112.
http://dx.doi.org/10.1142/S0217979212501123

[126]   Benatti, F. (2011) Three Qubits in a Symmetric Environment: Dissipatively Generated Asymptotic Entanglement. Annals of Physics, 326, 740-753.
http://dx.doi.org/10.1016/j.aop.2010.09.006

[127]   Leung, D., Mancinska, L., Matthews, W., Ozols, M. and Roy, A. (2012) Entanglement Can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels. Communications in Mathematical Physics, 311, 97-111.
http://dx.doi.org/10.1007/s00220-012-1451-x

[128]   Drumond, R.C., Souza, L.A.M. and Cunha, M.T. (2010) Asymptotic Entanglement Dynamics Phase Diagrams for Two Electromagnetic Field Modes in a Cavity. Physical Review A, 82, Article ID: 042302.
http://dx.doi.org/10.1103/PhysRevA.82.042302

[129]   Gütschow, J., Uphoff, S., Werner, R.F. and Zimborás, Z. (2010) Time Asymptotics and Entanglement Generation of Clifford Quantum Cellular Automata. Journal of Mathematical Physics, 51, Article ID: 015203.
http://dx.doi.org/10.1063/1.3278513

[130]   Annabestani, M., Abolhasani, M.R. and Abal, G. (2010) Asymptotic Entanglement in a Two-Dimensional Quantum Walk. Journal of Physics A: Mathematical and Theoretical, 43, Article ID: 075301.
http://dx.doi.org/10.1088/1751-8113/43/7/075301

[131]   Drumond, R. and Cunha, M. (2009) Asymptotic Entanglement Dynamics and Geometry of Quantum States. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 285308.
http://dx.doi.org/10.1088/1751-8113/42/28/285308

[132]   Pan, Q. and Jing, J. (2008) Hawking Radiation, Entanglement and Teleportation in Background of an Asymptotically Flat Static Black Hole. Physical Review D, 78, Article ID: 065015.
http://dx.doi.org/10.1103/PhysRevD.78.065015

[133]   Isar, A. (2008) Asymptotic Entanglement in Open Quantum Systems. International Journal of Infectious Diseases, 6, 689-694.
http://dx.doi.org/10.1142/S0219749908003967

[134]   Isar, A. (2007) Decoherence and Asymptotic Entanglement in Open Quantum Dynamics. Journal of Russian Laser Research, 28, 439-452.
http://dx.doi.org/10.1007/s10946-007-0033-4

[135]   Abal, G., et al. (2006) Asymptotic Entanglement in the Discrete-Time Quantum Walk. Annals of the 1st Workshop on Quantum Computation and Information, Universidade Católica de Pelotas, 189-200.

[136]   Bowen, G. and Datta, N. (2008) Asymptotic Entanglement Manipulation of Bipartite Pure States. IEEE Transaction on Information Theory, 54, 3677-3686.
http://dx.doi.org/10.1109/TIT.2008.926377

[137]   Benatti, F. and Floreanini, R. (2006) Asymptotic Entanglement of Two Independent Systems in a Common Bath. International Journal of Quantum Information, 4, 395.
http://dx.doi.org/10.1142/S0219749906001864

[138]   Hostens, E., Dehaene, J. and De Moor, B. (2006) Asymptotic Adaptive Bipartite Entanglement Distillation Protocol. Physical Review A, 73, Article ID: 062337.
http://dx.doi.org/10.1103/PhysRevA.73.062337

[139]   Ishizaka, S. and Plenio, M.B. (2005) Multi-Particle Entanglement under Asymptotic Positive Partial Transpose Preserving Operations. Physical Review A, 72, Article ID: 042325.
http://dx.doi.org/10.1103/PhysRevA.72.042325

[140]   Duan, R.Y., Feng, Y. and Ying, M.S. (2005) Entanglement-Assisted Transformation Is Asymptotically Equivalent to Multiple-Copy Transformation. Physical Review A, 72, Article ID: 024306.
http://dx.doi.org/10.1103/PhysRevA.72.024306

[141]   Childs, A.M., Leung, D.W., Verstraete, F. and Vidal, G. (2003) Asymptotic Entanglement Capacity of the Ising and Anisotropic Heisenberg Interactions. Quantum Information and Computation, 3, 97-105.

[142]   Horodecki, M., Sen(De), A. and Sen, U. (2003) Rates of Asymptotic Entanglement Transformations for Bipartite Mixed States: Maximally Entangled States Are Not Special. Physical Review A, 67, Article ID: 062314.
http://dx.doi.org/10.1103/PhysRevA.67.062314

[143]   Audenaert, K., De Moor, B., Vollbrecht, K.G.H. and Werner, R.F. (2002) Asymptotic Relative Entropy of Entanglement for Orthogonally Invariant States. Physical Review A, 66, Article ID: 032310.
http://dx.doi.org/10.1103/PhysRevA.66.032310

[144]   Vidal, G. (2002) On the Continuity of Asymptotic Measures of Entanglement. arXiv:quant-ph/0203107.

[145]   Hwang, W.-Y. and Matsumoto, K. (2002) Entanglement Measures with Asymptotic Weak-Monotonicity as Lower (Upper) Bound for the Entanglement of Cost (Distillation). Physics Letters A, 300, 581-585.

[146]   Audenaert, K. (2001) The Asymptotic Relative Entropy of Entanglement. Physical Review Letters, 87, Article ID: 217902.
http://dx.doi.org/10.1103/PhysRevLett.87.217902

[147]   Vidal, G. and Cirac, J. (2001) Irreversibility in Asymptotic Manipulations of Entanglement. Physical Review Letters, 86, 5803-5806.

[148]   Hayden, P.M., Horodecki, M. and Terhal, B.M. (2001) The Asymptotic Entanglement Cost of Preparing a Quantum State. Journal of Physics A: Mathematical and General, 34, 6891-6898.
http://dx.doi.org/10.1088/0305-4470/34/35/314

[149]   Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A. and Thapliyal, A.V. (2000) Exact and Asymptotic Measures of Multipartite Pure State Entanglement. Physical Review A, 63, Article ID: 012307.
http://dx.doi.org/10.1103/PhysRevA.63.012307

[150]   Machida, T. (2013) Limit Theorems for the Interference Terms of Discrete-Time Quantum Walks on the Line. Quantum Information and Computation, 13, 661-671.

[151]   Wootters, W. (1998) Entanglement of Formation of an Arbitrary State of Two Quibits. Physical Review Letters, 80, 2245-2248.
http://dx.doi.org/10.1103/PhysRevLett.80.2245

[152]   Rungta, P., Buzek, V., Caves, C.M., Hillery, M. and Milburn, G.J. (2001) Universal State Inversion and Concurrence in Arbitrary Dimensions. Physical Review A, 64, Article ID: 042315.
http://dx.doi.org/10.1103/PhysRevA.64.042315

[153]   Kuang, L.-M. and Zhou, L. (2003) Generation of Atom-Photon Entangled States in Atomic Bose-Einstein Condensate via Electromagnetically Induced Transparency. Physical Review A, 68, Article ID: 043606.
http://dx.doi.org/10.1103/PhysRevA.68.043606

[154]   Uhlmann, A. (2000) Fidelity and Concurrence of Conjugated States. Physical Review A, 62, Article ID: 032307.
http://dx.doi.org/10.1103/PhysRevA.62.032307

[155]   Peres, A. (1996) Separability Criterion for Density Matrices. Physical Review Letters, 77, 1413-1415.
http://dx.doi.org/10.1103/PhysRevLett.77.1413

[156]   Horodeckia, M., Horodeckib, P. and Horodecki, R. (1996) Separability of Mixed States: Necessary and Sufficient Conditions. Physical Review A, 223, 1-8.
http://dx.doi.org/10.1016/S0375-9601(96)00706-2

[157]   Vidal, G. and Werner, R.F. (2002) Computable Measure of Entanglement. Physical Review A, 65, Article ID: 032314.
http://dx.doi.org/10.1103/PhysRevA.65.032314

[158]   Coffman, V., Kundu, J. and Wootters, W.K. (2000) Distributed entanglement. Physical Review A, 61, Article ID: 052306.
http://dx.doi.org/10.1103/PhysRevA.61.052306

[159]   Wong, A. and Christensen, N. (2001) Potential Multiparticle Entanglement. Physical Review A, 63, Article ID: 044301.
http://dx.doi.org/10.1103/PhysRevA.63.044301

[160]   Osborne, T.J. and Verstraete, F. (2006) General Monogamy Inequality for Bipartite Qubit Entanglement. Physical Review Letters, 96, Article ID: 220503.
http://dx.doi.org/10.1103/PhysRevLett.96.220503

[161]   Liu, C.B. and Petulante, N. (2010) On the von Neumann Entropy of Certain Quantum Walks Subject to Decoherence. Mathematical Structures in Computer Science, 20, 1099-1115.

[162]   Abal, G., Siri, R., Romanelli, A. and Donangelo, R. (2006) Quantum Walk on the Line: Entanglement and Non-Local Conditions. Physical Review A, 73, Article ID: 042302.
http://dx.doi.org/10.1103/PhysRevA.73.042302

[163]   Ide, Y., Konno, N. and Machida, T. (2011) Entanglement for Discrete-Time Quantum Walks on the Line. Quantum Information and Computation, 11, 855-866.

[164]   Ampadu, C. (2011) Von Neumann Entanglement and Decoherence in Two Dimensional Quantum Walks. arXiv: 1110.0681.

[165]   Ampadu, C. (2012) On the von Neumann and Shannon Entropies for Quantum Walks on Z^2. International Journal of Quantum Information, 10, Article ID: 1250020.
http://dx.doi.org/10.1142/S0219749912500207

[166]   Grimmett, G., Janson, S. and Scudo, P. (2004) Weak Limits for Quantum Random Walks. Physical Review E, 69, Article ID: 026119.
http://dx.doi.org/10.1103/PhysRevE.69.026119

[167]   Konno, N. (2005) A New Type of Limit Theorems for the One Dimensional Quantum Random Walk. Journal of the Mathematical Society of Japan, 57, 1179-1195.
http://dx.doi.org/10.2969/jmsj/1150287309

[168]   Konno, N. (2002) Quantum Random Walks in One Dimension. Quantum Information Processing, 1, 345-354.
http://dx.doi.org/10.1023/A:1023413713008

[169]   Ampadu, C. (2013) Interference Phenomena in the Continuous-Time Quantum Random Walk on Z. Unpublished.

[170]   Ampadu, C. (2012) Limit Theorems for Decoherent Two Dimensional Quantum Walks. Quantum Information Processing, 11, 1921-1929.
http://dx.doi.org/10.1007/s11128-011-0349-4

[171]   Venegas-Andraca, S.E., Ball, J.L., Burnett, K. and Bose, S. (2005) Quantum Walks with Entangled Coins. New Journal of Physics, 7, 221.

[172]   Liu, C. and Pentulante, N. (2009) One-Dimensional Quantum Random Walk with Two Entangled Coins. Physical Review A, 79, Article ID: 032312.
http://dx.doi.org/10.1103/PhysRevA.79.032312

 
 
Top