ABB  Vol.5 No.12 , October 2014
Influence of Substrate Feeding and Process Parameters on Production of Coenzyme Q10 Using Paracoccus denitrificans ATCC 19367 Mutant Strain P-87
ABSTRACT
Coenzyme Q10 (CoQ10), an important antioxidant molecule playing a major role in electron transport chain, has been commercially produced by fermentation process for the use in oral nutraceutical formulations. Constructing the high-yielding CoQ10 producing strains is a pre-requisite for cost-effective production. A superior mutant strain P-87 generated from Paracoccus denitrificans ATCC 19367, which showed 1.25-fold improvement in specific CoQ10 content higher than the wild type strain at shake flask level, was selected to carry out the studies on CoQ10 yield improvement through fermenter process optimization. In the course of study, initially the cane-molasses-based medium and fed-batch fermentation strategy using pHBA in combination with sucrose were standardized in shake flask using wild type strain. This strategy was subsequently translated at 2 L laboratory fermenter while optimizing the fermentation process parameters using improved mutant strain P-87. Under optimized fermentation condition, mutant strain P-87 produced 49.85 mg/L of CoQ10 having specific content of 1.63 mg/g of DCW, which was 1.36 folds higher than the specific CoQ10 content of wild-type strain under similar optimized condition. The temperature and DO were found to be critical parameters for CoQ10 production by mutant strain P-87. The optimum temperature was found to be 32°C and the optimum DO concentration to be maintained throughout the fermentation cycle was found to be 30% of air saturation. Overall, a new cost-effective process has been established for the production of CoQ10 using the cheaper substrate “cane molasses” and higher CoQ10 producing mutant strain P-87.

Cite this paper
Tokdar, P. , Ranadive, P. , Kshirsagar, R. , Khora, S. and Deshmukh, S. (2014) Influence of Substrate Feeding and Process Parameters on Production of Coenzyme Q10 Using Paracoccus denitrificans ATCC 19367 Mutant Strain P-87. Advances in Bioscience and Biotechnology, 5, 966-977. doi: 10.4236/abb.2014.512110.
References
[1]   Wolf, D.E., Hoffman, C.H., Trenner, N.R., Arison, B.H., Shunk, C.H., Linn, B.D., McPherson, J.F. and Folkers, K. (1958) Structure Studies on the Coenzyme Q Group. Journal of the American Chemical Society, 80, 47-52.
http://dx.doi.org/10.1021/ja01550a096

[2]   Wu, Z.F., Weng, P.F., Du, G.C. and Chen, J. (2001) Advances of Coenzyme Q10 Function Studies. Journal of Ningbo University, 2, 85-88.

[3]   Keinan, E. and Eren, D. (1998) Total Synthesis of Polyprenoid Natural Products via Pd (0)-Catalyzed Oligomerization. Pure and Applied Chemistry, 60, 89-98.

[4]   Lipshutz, B.H., Mollard, P., Pfeiffer, S.S. and Chrisman, W. (2002) A Short, Highly Efficient Synthesis of Coenzyme Q10. Journal of the American Chemical Society, 124, 14282-14283.
http://dx.doi.org/10.1021/ja021015v

[5]   Laplante, S., Souchet, N. and Bry, P. (2009) Comparison of Low-Temperature Processes for Oil and Coenzyme Q10 Extraction from Mackerel and Herring. European Journal of Lipid Science and Technology, 111, 135-141.
http://dx.doi.org/10.1002/ejlt.200800133

[6]   Yoshida, H., Kotani, Y., Ochiai, K. and Araki, K. (1998) Production of Ubiquinone-10 Using Bacteria. The Journal of General and Applied Microbiology, 44, 19-26.
http://dx.doi.org/10.2323/jgam.44.19

[7]   Zhu, X.F., Yuasa, M., Okada, K. Suzuki, K.K., Nakagawa, T., Kawamukai, M. and Matsuda, H. (1995) Production of Ubiquinone in Escherichia coli by Expression of Various Genes Responsible for Ubiquinone Biosynthesis. Journal of Fermentation and Bioengineering, 79, 493-495.
http://dx.doi.org/10.1016/0922-338X(95)91268-A

[8]   Okada, K., Kainou, T., Tanaka, K., Nakagawa, T., Matsuda, H. and Kawamukai, M. (1998) Molecular Cloning and Mutational Analysis of the ddsA Gene Encoding Decaprenyl Diphosphate Synthase from Gluconobacter suboxydans. European Journal of Biochemistry, 255, 52-59.
http://dx.doi.org/10.1046/j.1432-1327.1998.2550052.x

[9]   Lee, J.K., Her, G., Kim, S.Y. and Seo, J.H. (2004) Cloning and Functional Expression of the dps Gene Encoding Decaprenyl Diphosphate Synthase from Agrobacterium tumefaciens. Agricultural and Biological Chemistry, 48, 1347-1348.

[10]   Saiki, R., Nagata, A., Kainou, T. Matsuda, H. and Kawamukai, M. (2005) Characterization of Solanesyl and Decaprenyl Diphosphate Synthases in Mice and Humans. FEBS Journal, 272, 5606-5622.
http://dx.doi.org/10.1111/j.1742-4658.2005.04956.x

[11]   Park, Y.C., Kim, S.J., Choi, J.H., Lee, W.H., Park, K.M., Kawamukai, M., Ryu, Y.W. and Seo, J.H. (2005) Batch and Fed-Batch Production of Coemzyme Q10 in Recombinant Escherichia coli Containing Decaprenyl Diphosphate Synthase Gene for Gluconobacter suboxydans. Applied Microbiology and Biotechnology, 67, 192-196.
http://dx.doi.org/10.1007/s00253-004-1743-y

[12]   Kawamukai, M. (2009) Biosynthesis and Bioproduction of Coenzyme Q10 by Yeasts and Other Organisms. Biotechnology and Applied Biochemistry, 53, 217-226.
http://dx.doi.org/10.1042/BA20090035

[13]   Zhong, W., Fang, J., Liu, H. and Wang, X. (2009) Enhanced Production of CoQ10 by Newly Isolated Sphingomonas sp. ZUTEO3 with a Coupled Fermentation-Extraction Process. Journal of Industrial Microbiology Biotechnology, 36, 687-693.
http://dx.doi.org/10.1007/s10295-009-0538-7

[14]   Zhong, W., Wang, W., Kong, Z., Wu, B., Zhong, L., Li, X., Yu, J. and Zhang, F. (2011) Coenzyme Q10 Production Directly from Precursors by Free and Gel-Entrapped Sphingomonas sp. ZUTE03 in a Water-Organic Solvent, Two-Phase Conversion System. Applied Microbiology and Biotechnology, 89, 293-302.
http://dx.doi.org/10.1007/s00253-010-2876-9

[15]   Gu, S.B., Yao, J.M., Yuan, Q.P., Xue, P.J., Zheng, Z.M., Wang, L. and Yu, Z.L. (2006) Kinetics of Agrobacterium tumefaciens Ubiquinone-10 Batch Production. Process Biochemistry, 41, 1908-1912.
http://dx.doi.org/10.1016/j.procbio.2006.04.002

[16]   Koo, B.S., Gong, Y.J., Kim, S.Y., Kim, C.W. and Lee, H.C. (2010) Improvement of Coenzyme Q10 Production by Increasing the NADH/NAD+ Ratio in Agrebacterium tumefaciens. Bioscience, Biotechnology and Biochemistry, 74, 895-898.
http://dx.doi.org/10.1271/bbb.100034

[17]   Ha, S.J., Kim, S.Y., Seo, J.H., Lee, K.M. and Lee, J.K. (2007) Controlling the Sucrose Concentration Increases Coenzyme Q10 Production in Fed-Batch Culture of Agrebacterium tumefaciens. Applied Microbiology and Biotechnology, 76, 109-116.
http://dx.doi.org/10.1007/s00253-007-0995-8

[18]   Kuratsu, Y. and Inuzuka, K. (1985) Factors Affecting Broth Viscosity and Coenzyme Q10 Production by Agrobacterium Species. Applied Microbiology and Biotechnology, 21, 55-59.

[19]   Choi, G.S., Kim, Y.S., Seo, J.H. and Ryu, Y.W. (2005) Restricted Electron Flux Increases Coenzyme Q10 Production in Agrobacterium tumefaciens ATCC4452. Process Biochemistry, 40, 3225-3229.
http://dx.doi.org/10.1016/j.procbio.2005.03.038

[20]   Yen, H. and Chiu, C. (2007) The Influences of Aerobic Dark and Anaerobic-Light Cultivation on CoQ10 Production by Rhodobacter sphaeroides in the Submerged Fermenter. Enzyme and Microbial Technology, 41, 600-604.
http://dx.doi.org/10.1016/j.enzmictec.2007.05.005

[21]   Yen, H.W. and Shih, T.Y. (2009) Coenzyme Q10 Production by Rhodobacter sphaeroides in Stirred Tank and in Airlift Bioreactor. Bioprocess and Biosystems Engineering, 32, 711-716.
http://dx.doi.org/10.1007/s00449-008-0294-5

[22]   Kuratsu, Y., Hagino, H. and Inuzuka, K. (1984) Effect of Ammonium Ion on Coenzyme Q10 Fermentation by Agrobacterium Species. Agricultural and Biological Chemistry, 48, 1347-1348.
http://dx.doi.org/10.1271/bbb1961.48.1347

[23]   Sakato, K., Tanaka, H., Shibata, S. and Kuratsu, Y. (1992) Agitation-Aeration Studies on Coenzyme Q10 Production Using Rhodopseudomonas spheroids. Biotechnology and Applied Biochemistry, 16, 19-28.

[24]   Pfefferle, C., Theobald, U., Gurtler, H. and Fiedler, H.P. (2000) Improved Secondary Metabolite Production in the Genus Streptosporangium by Optimization of Fermentation Conditions. Journal of Biotechnology, 80, 135-142.
http://dx.doi.org/10.1016/S0168-1656(00)00249-2

[25]   Wu, Z.F., Du, G.C. and Chen, J. (2003) Effects of Dissolved Oxygen Concentration and DO-Stat Feeding Strategy on CoQ10 Production with Rhizobium radiobacter. World Journal of Microbiology and Biotechnology, 19, 925-928.
http://dx.doi.org/10.1023/B:WIBI.0000007322.19802.57

[26]   Zhang, D., Shrestha, B., Li, Z. and Tan, T. (2007) Ubiquinone-10 Production Using Agrobacterium tumefaciens dps Gene in Escherichia coli by Expression of Various Genes Responsible for Ubiquinone Biosynthesis. Journal of Bioscience and Bioengineering, 79, 493-495.

[27]   Tokdar, P., Vanka, R., Ranadive, P., George, S., Khora, S.S. and Deshmukh, S.K. (2014) Protoplast Fusion Technology for Improved Production of Coenzyme Q10 Using Paracoccus denitrificans ATCC 19367 Mutant Strains. Journal of Biochemical Technology, 5, 685-692.

[28]   Dixson, D.D., Boddy, C.N. and Doyle, R.P. (2011) Reinvestigation of Coenzyme Q10 Isolation from Sporidiobolus johnsonii. Chemistry Biodiversity, 8, 1033-1051.
http://dx.doi.org/10.1002/cbdv.201000278

[29]   Ranadive, P., Mehta, A. and George, S. (2011) Strain Improvement of Sporidiobolus johnsonii ATCC 20490 for Biotechnological Production of Coenzyme Q10. International Journal of Chemical Engineering and Applications, 2, 216-220.
http://dx.doi.org/10.7763/IJCEA.2011.V2.106

[30]   Tokdar, P., Wani, A., Kumar, P., Ranadive, P. and George, S. (2013) Process and Strain Development for Reduction of Broth Viscosity with Improved Yield in Coenzyme Q10 Fermentation by Agrobacterium tumefaciens ATCC4452. Fermentation Technology, 2, 110.
http://dx.doi.org/10.4172/2167-7972.1000110

[31]   Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 26, 350-356.
http://dx.doi.org/10.1021/ac60111a017

[32]   Bule, M.V. and Singhal, R.S. (2013) Fermentation Kinetics of Production of Ubiquinone-10 by Paracoccus denitrificans NRRL B-3785: Effect of Type and Concentration of Carbon and Nitrogen Sources. Food Science and Biotechnology, 23, 607-613.

[33]   Matsumura, M., Kobayashi, T. and Aiba, S. (1983) Anaerobic Production of Ubiquinone-10 by Paracoccus denitrificans. European Journal of Applied Microbiology and Biotechnology, 17, 85-89.
http://dx.doi.org/10.1007/BF00499856

[34]   Kaplan, P., Kucera, I. and Dadak, V. (1993) Effect of Oxygen on Ubiquinone-10 Production by Paracoccus denitrificans. Biotechnology Letters, 15, 1001-1002.
http://dx.doi.org/10.1007/BF00129925

[35]   Yen, H.W., Feng, C.Y. and Kang, J.L. (2009) Cultivation of Rhodobacter sphaeroides in the Stirred Bioreactor with Different Feeding Strategies for CoQ10 Production. Applied Biochemistry and Biotechnology, 160, 1441-1449.
http://dx.doi.org/10.1007/s12010-009-8576-1

[36]   Tian, Y., Yue, T., Yuan, Y., Soma, P.K. and Lo, Y.M. (2010) Improvement of Cultivation Medium for Enhanced Production of Coenzyme Q10 by Photosynthetic Rhodospirillum rubrum. Journal of Biochemical Engineering, 51, 160-166.
http://dx.doi.org/10.1016/j.bej.2010.06.011

[37]   Ha, S.J., Kim, S.Y., Seo, J.H., Jeya, M., Zhang, Y.W., Ramu, T., Kim, I.W. and Lee, J.K. (2009) Ca2+ Increases the Specific Coenzyme Q10 Content in Agrebacterium tumefaciens. Bioprocess and Biosystems Engineering, 32, 697-700.
http://dx.doi.org/10.1007/s00449-009-0318-9

[38]   Bule, M.V. and Singhal, R.S. (2010) Combined Effect of Agitation/Aeration and Fed-Batch Strategy on Ubiquinone-10 Production by Pseudomonas diminuta. Chemical Engineering Technology, 33, 885-894.
http://dx.doi.org/10.1002/ceat.201000072

[39]   Kien, N.B., Kong, I., Lee, M. and Kim, J.K. (2010) Coenzyme Q10 Production in a 150-l Reactor by a Mutant Strain of Rhodobacter sphaeroides. Journal of Industrial Microbiology Biotechnology, 37, 521-529.
http://dx.doi.org/10.1007/s10295-010-0699-4

[40]   Ha, S.J., Kim, S.Y., Seo, J.H., Oh, D.K. and Lee, J.K. (2007) Optimization of Culture Conditions and Scale-Up to Pilot and Plant Scales for Coenzyme Q10 Production by Agrobacterium tumefaciens. Applied Microbiology and Biotechnology, 74, 974-980.
http://dx.doi.org/10.1007/s00253-006-0744-4

 
 
Top