MSCE  Vol.2 No.11 , November 2014
Electrical Properties of CuO-Doped PZT-PZN-PMnN Piezoelectric Ceramics Sintered at Low Temperature
ABSTRACT
The 0.8Pb(Zr0.48Ti0.52)O3-0.125Pb(Zn1/3Nb2/3)O3-0.075Pb(Mn1/3Nb2/3)O3 (PZT-PZN-PMnN) + x wt% CuO piezoelectric ceramics, where x = 0.0, 0.05, 0.075, 0.10, 0.125, 0.150, and 0.175, have been fabricated by the conventional solid-state reaction method and the B-site Oxide mixing technique (BO). The effect of CuO on the sinterability, structure, and electrical properties of PZT-PZN-PMnN ceramics was systematically studied. The CuO addition significantly reduced the sintering temperature of the ceramics from 1150°C to 850°C. Experimental results showed that with the doping of CuO, all the ceramics could be well sintered and exhibit a dense, pure perovskite structure. The specimen containing 0.125 wt% CuO sintered at 850°C showed the good electrical properties: the density of 7.91 g/cm3; the electromechanical coupling factor, kp = 0.55 and kt = 0.46; the dielectric constant, ε = 1179; the dielectric loss (tand) of 0.006; the mechanical quality factor (Qm) of 1174; the piezoelectric constant (d31) of 112 pC/N.

Cite this paper
Dinh Gio, P. , Vuong, L. , Thanh Hoa, H. (2014) Electrical Properties of CuO-Doped PZT-PZN-PMnN Piezoelectric Ceramics Sintered at Low Temperature. Journal of Materials Science and Chemical Engineering, 2, 20-27. doi: 10.4236/msce.2014.211004.
References
[1]   Xu, Y. (1991) Ferroelctric Materials and Their Applications. North-Holland, Amsterdam-London-New York-Tokyo.

[2]   Hou, Y.D., Zhu, M.K., Tian, C.S. and Yan, H. (2004) Structure and Electrical Properties of PMZN-PZT Quaternary Ceramics for Piezoelectric Transformers. Sensors and Actuators A: Physical, 116, 455-460.
http://dx.doi.org/10.1016/j.sna.2004.05.012

[3]   Gao, F., Cheng, L., Hong, R., Liu, J., Wang, C. and Tian, C. (2009) Crystal Structure and Piezoelectric Properties of xPb(Mn1/3Nb2/3)O3-(0.2-x)Pb(Zn1/3Nb2/3)O3-0.8Pb(Zr0.52Ti0.48)O3 Ceramics. Ceramics International, 35, 1719-1723.http://dx.doi.org/10.1016/j.ceramint.2008.09.001

[4]   Hou, Y.D, Chang, L.M., Zhu, M.K., Song, X.M. and Yan, H. (2007) Effect of Li2CO3 Addition on the Dielectric and Piezoelectric Responses in the Low-Temperature Sintered 0.5PZN-0.5PZT Systems. Journal of Applied Physics, 102, Article ID: 084507. http://dx.doi.org/10.1063/1.2800264

[5]   Jin, B.M., Lee, D.S., Kimb, I.W., Kwon, J.H., Lee, J.S., Song, J.S. and Jeong, S.J. (2004) The Additives for Improving Piezoelectric and Ferroelectric Properties of 0.2Pb(Mg1/3Nb2/3)O3-0.8[PbZrO3-PbTiO3] Ceramics. Ceramics International, 30, 1449-1451. http://dx.doi.org/10.1016/j.ceramint.2003.12.070

[6]   Lee, J.S., Choi, M.S., Hung, N.V., Kim, Y.S., Kim, I.W., Park, E.C., Jeong, S.J. and Song, J.S. (2007) Effects of High Energy Ball-Milling on the Sintering Behavior and Piezoelectric Properties of PZT-Based Ceramics. Ceramics International, 33, 1283-1286. http://dx.doi.org/10.1016/j.ceramint.2006.04.017

[7]   Vuong, L.D. and Gio, P.D. (2013) Effect of Li2CO3 Addition on the Sintering Behavior and Physical Properties of PZT-PZN-Pmnn Ceramics. International Journal of Materials Science and Applications, 2, 89-93.http://dx.doi.org/10.11648/j.ijmsa.20130203.13

[8]   Kim, J.M., Kim, J.S. and Cheon, C.I. (2011) Low-Temperature Sintering and Electrical Properties of PGO-Doped PNN-PZT Ceramics. Journal of Ceramic Processing Research, 12, 12-15.

[9]   Yoo, J. and Lee, S. (2009) Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3) 0.02(Ni1/3Nb2/3)0.12(ZrxTi1-x)0.86O3 System Ceramics. Transactions on Electrical and Electronic Materials, 10, 121-125.

[10]   Chao, X., Yang, Z., Kang, C. and Chang, Y. (2008) Effects of BiFeO3 Addition on Electrical Properties and Temperature Stability of Low Temperature Sintered PZT-PFW-PMN Ceramics. Sensors and Actuators A: Physical, 141, 482-488. http://dx.doi.org/10.1016/j.sna.2007.10.035

[11]   Han, H.S., Park, E.C., Lee, J.S., Yoon, J.I. and Ahn, K.K. (2011) Low-Firing Pb(Zr,Ti)O3-Based Multilayer Ceramic Actuators Using Ag Inner Electrode. Transactions on Electrical and Electronic Materials, 12, 249-252.

[12]   Yoo, J., Lee, I., Paik, D.S. and Park, Y.W. (2009) Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Mn1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 Ceramics with Variation of Sintering Time. Journal of Electroceramics, 23, 519-523. http://dx.doi.org/10.1007/s10832-008-9524-0

[13]   Yoon, S.J., Choi, J.W., Choi, J.Y., Wan, D., Li, Q. and Yang, Y. (2010) Influences of Donor Dopants on the Properties of PZT-PMS-PZN Piezoelectric Ceramics Sintered at Low Temperatures. Journal of the Korean Physical Society, 57, 863-867.

[14]   Nam, C.H., Park, H.Y., Seo, I.T., Choi, J.H., Nahm, S. and Lee, H.G. (2011) Effect of CuO on the Sintering Temperature and Piezoelectric Properties of MnO2-Doped 0.75Pb(Zr0.47Ti0.53)O3-0.25Pb(Zn1/3Nb2/3)O3 Ceramics. Journal of Alloys and Compounds, 509, 3686-3689.
http://dx.doi.org/10.1016/j.jallcom.2010.12.163

[15]   Fan, H. and Kim, H.E. (2002) Perovskite Stabilization and Electromechanical Properties of Polycrystalline Lead Zinc Niobate-Lead Zirconate Titanate. Journal of Applied Physics, 91, 317-322.
http://dx.doi.org/10.1063/1.1421036

[16]   Kim, M.S., Jeon, S., Jeong, S.J., Kim, I.S. and Song, J.S. (2008) Effect of CuO Additions on Microstructures and Electromechanical Properties of 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 Ceramics. Electronic Materials Letters, 4, 189-192.

[17]   Kitaguchi, H., Takada, J., Oda, K. and Miura, Y. (1990) Equilibrium Phase Diagram for the System PbO-CaO-CuO. Journal of Materials Research, 5, 829-931. http://dx.doi.org/10.1557/JMR.1990.0929

[18]   Kim, Y.H., Ryu, H., Cho, Y.K., Lee, H.J. and Nahm, S. (2013) TEM Observations on 0.65Pb(Zr0.42Ti0.58)O3-0.35Pb(Ni0.33Nb0.67)O3 Ceramics with CuO Additive. Journal of the American Ceramic Society, 96, 312-317. http://dx.doi.org/10.1111/j.1551-2916.2012.05461.x

[19]   Jian, H.L. (2013) Effect of CuO Addition on Structure and Electrical Properties of Low Temperature Sintered Quaternary Piezoelectric Ceramics. Bulletin of Materials Science, 36, 877-881.

[20]   Nam, C.H., Park, H.Y., Seo, I.T., Choi, J.H., Joung, M.R., Nahm, S., et al. (2011) Low-Temperature Sintering and Piezoelectric Properties of 0.65Pb(Zr1-XTiX)O3-0.35Pb(Ni0.33Nb0.67)O3 Ceramics. Journal of the American Ceramic Society, 94, 3442-3448. http://dx.doi.org/10.1111/j.1551-2916.2011.04538.x

[21]   Chao, X., Ma, D., Gu, R. and Yang, Z. (2010) Effects of CuO Addition on the Electrical Responses of the Low-Temperature Sintered Pb(Zr0.52Ti0.48)O3-Pb(Mg1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3 Ceramics. Journal of Alloys and Compounds, 491, 698-702. http://dx.doi.org/10.1016/j.jallcom.2009.11.048

 
 
Top