JMP  Vol.5 No.16 , October 2014
A Process Model of Quantum Mechanics
Author(s) William H. Sulis1,2*
ABSTRACT
A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space, which can be defined as a self-consistent quantum mechanics. An emergent space-time  and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). This model has the potential to address several paradoxes in quantum mechanics while remaining computationally powerful.

Cite this paper
Sulis, W. (2014) A Process Model of Quantum Mechanics. Journal of Modern Physics, 5, 1789-1795. doi: 10.4236/jmp.2014.516176.
References
[1]   Hemmick, D.L. and Dhakur, A.M. (2012) Bell’s Theorem and Quantum Realism: Reassessment in Light of the Schrodinger Paradox. Springer, New York.
http://dx.doi.org/10.1007/978-3-642-23468-2

[2]   Colbeck, R. and Renner, R. (2012) Is a System’s Wave Function in One-One Correspondence with Its Elements of Reality?
http://arXiv: 1111.6597v2 [quant-ph]

[3]   Ney, A. and Albert, D.Z., Eds. (2013) The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press, New York.
http://dx.doi.org/10.1093/acprof:oso/9780199790807.001.0001

[4]   Harrigan, N. and Spekkens, R. (2010) Foundations of Physics, 40, 125-157.
http://dx.doi.org/10.1007/s10701-009-9347-0

[5]   Fuchs, C. and Schack, R. (2013) Reviews of Modern Physics, 85, 1693-1715.
http://dx.doi.org/10.1103/RevModPhys.85.1693

[6]   Pusey, M.F., Barrett, J. and Rudolph, T. (2012) On the Reality of the Quantum State.
http://arXiv: 1111.3328v3 [quant-ph]

[7]   Bell, J.S. (1987) Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge.

[8]   Shimony, A. (1993) Search for a Naturalistic World View, Volume II, Natural Science and Metaphysics. Cambridge University Press, Cambridge.

[9]   Coecke, B., Ed. (2011) New Structures for Physics. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-12821-9

[10]   Bombelli, L., Lee, J., Meyer, D, and Sorkin, R.D. (1987) Physical Review Letters, 59, 521-524.
http://dx.doi.org/10.1103/PhysRevLett.59.521

[11]   Gisin, N. (2013) Quantum Correlations in Newtonian Space and Time: Arbitrarily Fast Communication or Nonlocality?
http://arXiv: 1210.7308v2 [quant-ph]

[12]   Kempf, A. (2010) Spacetime Could Be Simultaneously Continuous and Discrete in the Same Way Information Can.
http://arXiv: 1010.4354v1 [gr-qc]

[13]   Eastman, T.E. and Keeton, H., Eds. (2004) Physics and Whitehead: Quantum, Process and Experience. SUNY Press, Albany.

[14]   Sulis, W. (2012) Nonlinear Dynamics, Psychology, and Life Sciences, 16, 113-136.

[15]   Sulis, W. (2010) Nonlinear Dynamics, Psychology, and Life Sciences, 14, 209-238.

[16]   Borchers, H.J. and Sen, R.N. (2006) Mathematical Implications of Einstein-Weyl Causality. Springer-Verlag, New York.
http://dx.doi.org/10.1007/3-540-37681-X

[17]   Jorgensen, P.E.T. (2011) Opuscula Mathematica, 31, 209-236.
http://dx.doi.org/10.7494/OpMath.2011.31.2.209

[18]   Zayed, A.I. (1993) Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton.

[19]   Trofimova, I. (2001) Principles, Concepts, and Phenomena of Ensembles with Variable Structure. In: Sulis, W. and Trofimova, I., Eds., Nonlinear Dynamics in the Life and Social Sciences, IOS Press, Amsterdam, 217-231.

[20]   Conway, J.H. (2001) On Numbers and Games. A.K. Peters, Natick.

[21]   Hodges, W. (2006) Building Models by Games. Dover Publications, Mineola.

[22]   Maymon, S. and Oppenheim, A.V. (2011) IEEE Transactions on Signal Processing, 59, 4745-4758.

[23]   Feynman, R.P. and Hibbs, A.R. (2010) Quantum Mechanics and Path Integrals. Dover Publications, Mineola.

[24]   Byron Jr., F.W. and Fuller, R.W. (1970) Mathematics of Classical and Quantum Mechanics. Addison-Wesley, Don Mills.

[25]   Sulis, W. (2013) Quantum Mechanics without Observers.
http://arXiv: 1302.4156v2 [quant-ph]

 
 
Top