AS  Vol.5 No.12 , October 2014
Prospective Bioactive Compounds from Vernonia amygdalina, Lippia javanica, Dysphania ambrosioides and Tithonia diversifolia in Controlling Legume Insect Pests
Abstract: Synthetic insecticides are widely known to control insect pest, but due to high operational cost, environmental pollution, toxicity to humans, harmful effect on non-target organisms and the development of insect resistance to this products, have created the need for developing alternative such as those involving the use of botanical pesticides to control insect pest. Bioactive compounds derived from plant could be an alternative source for insect pest control because they constitute a rich source of natural chemicals. This review aims to explore the potential of plant bioactive compounds from Vernonia amygdalina, Lippia javanica, Dysphania ambrosioides and Tithonia diversifolia as a low-cost, safe and environmentally friendly means of controlling insect pests in legumes.
Cite this paper: Mwanauta, R. , Mtei, K. and Ndakidemi, P. (2014) Prospective Bioactive Compounds from Vernonia amygdalina, Lippia javanica, Dysphania ambrosioides and Tithonia diversifolia in Controlling Legume Insect Pests. Agricultural Sciences, 5, 1129-1139. doi: 10.4236/as.2014.512123.

[1]   Ebadollahi (2013) Plant Essential Oils from Apiaceae Family Alternatives to Conventional Insecticides. Young Researchers Club, Ardabil Branch, Islamic Azad University, Ardabil, 149-172.

[2]   Opender, K., Suresh, W. and Dhaliwal, G.S. (2008) Essential Oils as Green Pesticides: Potential and Constraints. Insect Biopesticide Research Centre. Biopesticides International, 4, 63-84.

[3]   Dales, M.J. (1996) A Review of Plant Material Used for Controlling Insect Pests of Stored Products. Bulletin-Natural Resources Institute, 65, 1-84.

[4]   Swain T. (1977) Secondary Plant Compounds as Protective Agents. Annual Review of Plant Physiology, 28, 479-501.

[5]   Gonzalo, S.A. (2004) Botanical Insecticides: Radcliffe's IPM World Textbook. Universidad d e Concepción, Concepción.

[6]   Hassanali, A. and Lwande, W. (1989) Antipest Secondary Metabolites from African Plants. In: Arnason, L.T., Philogene, B.J.R. and Morand, P., Eds., Insecticides of Plant Origin, ACS Symposium Series 387, American Chemical Society, Washington DC, 78-94.

[7]   Klocke, H.A., Balandrin, M.F., Barnby, M.A. and Yamasaki, R.B. (1989) Limonoids, Phenolics, and Furanocoumarins as Insects Antifeedants, Repellents, and Growth Inhibitory Compounds. In: Arnason, L.T., Philogene, B.J.R. and Morand, P., Eds., Insecticides of Plant Origin, ACS Symposium Series 387, American Chemical Society, Washington DC, 136-149.

[8]   Abudulai, M., Shepard, B.M. and Salifu, A.B. (2003) Field Evaluation of a Neem (Azadirachta indica A. Juss)-Based Formulation Neemix against Nezara viridula (L.) (Hemiptera: Pentatomidae) in Cowpea. International Journal of Pest Management, 49, 109-113.

[9]   Isman M. (2000) Plant Essential Oils for Pest and Disease Management. Crop Protection, 19, 603-608.

[10]   Ball-Coelho, B., Bruin, A.J., Roy, R.C. and Riga, E. (2003) Forage Pearl Millet and Marigold as Rotation Crops for Biological Control of Root-Lesion Nematodes in Potato. Agronomy Journal, 95, 282-292.

[11]   Chung, I.M., Kim, K.H., Ahn, J.K., Chun, S.C., Kim, C.S., Kim, J.T. and Kim, S.H. (2002) Screening of Allelochemicals on Barnyardgrass (Echinochloa crus-galli) and Identification of Potentially Allelopathic Compounds from Rice (Oryza sativa) Variety Hull Extracts. Crop Protection, 21, 913-920.

[12]   Facknath, S. and Lalljee, B. (2000) Allelopathic Strategies for Eco-Friendly Crop Protection. In: Narwal, S.S., Hoagland, R.E., Dilday, R.H. and Reigosa, M.J., Eds., Allelopathy in Ecological Agriculture and Forestry, Kluwer Academic Publishers, London, 33-46, 267 p.

[13]   Singh, S., Nayyar, K., Dhillon, R.S., Bhathal, S.S. and Singh, D. (1995) Biological Activity of Some Alantolide Derivatives against Mustard Aphid, Lipaphis erysimi (Kaltenbach). In: Walia, S. and Parmar, B.S., Eds., Pesticides, Crop Protection and Environment, Oxford and IBH Publishing Co. Pvt. Ltd.

[14]   Chandrashekharaiah, M., Sannaveerappanavar, V., Chakravarthy, A. and Verghese, A. (2013) Biological Activity of Select Plant and Indigenous Extracts against Diamondback Moth, Plutella xyllostella (L.) (Lepidoptera: Plutellidae) and Cowpea Aphid, Aphis craccivora Koch (Hemiptera: Aphididae). Current Biotica, 7, 134-144.

[15]   Roy, B., Amin, R., Uddin, M.N., Islam, A.T.M.S., Islam, M.J. and Halder, B.C. (2005) Leaf Extracts of Shiyalmutra (Blumea lacer Dc.) as Botanical Insecticides against Grain Borrer and Rice Weevil. Journal of Biological Sciences, 5, 201-204.

[16]   Koona, P. and Dorn, S. (2005) Extracts from Tephrosia vogelii for the Protection of Stored Legume Seeds against Damage by Three Bruchid Species. Annals of Applied Biology, 147, 43-48.

[17]   Luckman, W.H. and Metclalf, R.L. (1978) The Pest Management Concept. An Introduction to Insect Pest Management. John Willey and Sons, New York, 3-35.

[18]   Muzemu, S., Mvumi, B., Nyirenda, S., Sileshi, G., Sola, P., Chikukura, L., Kamanula, J.F., Belmain, S.R. and Stevenson, P. (2011) Pesticidal Effects of Indigenous Plants Extracts against Rape Aphids and Tomato Red Spider Mites. The African Crop Science Conference Proceedings, 10, 171-173.

[19]   Akunne, C.E., Ononye, B.U. and Mogbo, T.C. (2013) Evaluation of the Efficacy of Mixed Leaf Powders of Vernonia amygdalina (L.) and Azadirachta indica (A. Juss) against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Advances in Bioscience and Bioengineering, 1, 86-95.

[20]   Obafemi, C., Sulaimon, T., Akinpelu, D. and Olugbade, T. (2009) Antimicrobial Activity of Extracts and a Germacranolidetype Sesquiterpene Lactone from Tithonia diversifolia Leaf Extract. African Journal of Biotechnology, 5.

[21]   Burgueño-Tapia, E., Castillo, L., González-Coloma, A. and Joseph-Nathan, P. (2008) Antifeedant and Phototoxic Activity of the Sesquiterpene p-Benzoquinone Perezone and Some of Its Derivatives. Journal of Chemical Ecology, 34, 766-771.

[22]   Challand, S. and Willcox, M. (2009) A Clinical Trial of the Traditional Medicine Vernonia amygdalina in the Treatment of Uncomplicated Malaria. The Journal of Alternative and Complementary Medicine, 15, 1231-1237.

[23]   Li, J., Juliar, B., Yiannoutsos, C., Ansari, R., Fox, E., Fisch, M.J., Einhorn, L.H. and Sweeney, C.J. (2005) Weekly Paclitaxel and Gemcitabine in Advanced Transitional-Cell Carcinoma of the Urothelium: A Phase II Hoosier Oncology Group Study. Journal of Clinical Oncology, 23, 1185-1191.

[24]   Erasto, P., Grierson, D.S. and Afolayan, A.J. (2007) Evaluation of Antioxidant Activity and the Fatty Acid Profile of the Leaves of Vernonia amygdalina Growing in South Africa. Food Chemistry, 104, 636-642.

[25]   Farombi, E.O. (2004) African Indigenous Plants with Chemotherapeutic Potentials and Biotechnological Approach to the Production of Bioactive Prophylactic Agents. African Journal of Biotechnology, 2, 662-671.

[26]   Khalafalla, M.M., Abdellatef, E., Daffalla, H.M., Nassrallah, A.A., Aboul-Enein, K.M., Lightfoot, D.A., Cocchetto, A. and El-Shemy, H.A. (2009) Antileukemia Activity from Root Cultures of Vernonia amygdalina. Journal of Medicinal Plants Research, 3, 556-562.

[27]   Adebayo, O.L., James, A., Kasim, S.B. and Jagri, O.P. (2014) Leaf Extracts of Vernonia amygdalina Del. from Northern Ghana Contain Bioactive Agents that Inhibit the Growth of Some Beta-Lactamase Producing Bacteria in Vitro. British Journal of Pharmaceutical Research, 4, 192-202.

[28]   Sweeney, C.J., Roth, B.J., Kabbinavar, F.F., Vaughn, D.J., Arning, M., Curiel, R.E., Kaufman, D.S., et al. (2006) Phase II Study of Pemetrexed for Second-Line Treatment of Transitional Cell Cancer of the Urothelium. Journal of Clinical Oncology, 24, 3451-3457.

[29]   Farombi, E.O. and Owoeye, O. (2011) Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia bioflavonoid. International Journal of Environmental Research and Public Health, 8, 2533-2555.

[30]   Igile, G.O., Oleszek, W., Jurzysta, M., Burda, S., Fafunso, M. and Fasanmade, A.A. (1994) Flavonoids from Vernonia amygdalina and Their Antioxidant Activities. Journal of Agricultural and Food Chemistry, 42, 2445-2448.

[31]   Igile, G., Oleszek, W., Burda, S. and Jurzysta, M. (1995) Nutritional Assessment of Vernonia amygdalina Leaves in Growing Mice. Journal of Agricultural and Food Chemistry, 43, 2162-2166.

[32]   Jisaka, M., Ohigashi, H., Takagaki, T., Nozaki, H., Tada, T., Hirota, M., Kaji, M., et al. (1992) Bitter Steroid Glucosides, Vernonioside A1, A2, and A3, and Related B1 from a Possible Medicinal Plant, Vernonia amygdalina, Used by Wild Chimpanzees. Tetrahedron, 48, 625-632.

[33]   Alabi, D., Onibudo, M. and Amusa, N. (2005) Chemicals and Nutritional Composition of Four Botanicals with Fungitoxic Properties. World Journal of Agricultural Sciences, 1, 84-88.

[34]   Huang, Y., Chen, S.X. and Ho, S.H. (2000) Bioactivities of Methyl Allyl Disulfide and Diallyl Trisulfide from Essential Oil of Garlic to Two Species of Stored-Product Pests, Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Economic Entomology, 93, 537-543.

[35]   Ganjian, I., Kubo, I. and Fludzinski, P. (1983) Insect Antifeedant Elemanolide Lactones from Vernonia amygdalina. Phytochemistry, 22, 2525-2526.

[36]   Dunsworth, T., Rich, S., Morton, N. and Barbosa, J. (1982) Heterogeneity of Insulin-Dependent Diabetes—New Evidence. Clinical Genetics, 21, 233-236.

[37]   Pascual, M., Slowing, K., Carretero, E., Sánchez Mata, D. and Villar, A. (2001) Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology, 76, 201-214.

[38]   Pascual, M.E, Siowing, K., Carretero, E., Sànchez Mata, D. and Villar, A. (2001) Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology, 76, 201-214.

[39]   Lukwa, N., Molgaard, P., Furu, P. and Bogh, C. (2009) Lippia javanica (Burm F) Spreng: Its General Constituents and Bioactivity on Mosquitoes. Tropical Biomedicine, 26, 85-91.

[40]   Smith, B.D. (2006) Eastern North America as an Independent Center of Plant Domestication. Proceedings of the National Academy of Sciences of the United States of America, 103, 12223-12228.

[41]   Madzimure, J., Nyahangare, E.T., Hamudikuwanda, H., Hove, T., Stevenson, P.C., Belmain, S.R. and Mvumi, B.M. (2011) Acaricidal Efficacy against Cattle Ticks and Acute Oral Toxicity of Lippia javanica (Burm F.) Spreng. Tropical Animal Health and Production, 43, 481-489.

[42]   Tapondjou AL, Adler C, Fontem DA, Bouda H, Reichmuth C (2005). Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J. Stored Prod. Res. 41: 91-102.

[43]   Jabbar, A., Zaman, M.A., Iqbal, Z., Yaseen, M. and Shamim, A. (2007) Anthelmintic Activity of Chenopodium album (L.) and Caesalpinia crista (L.) against Trichostrongylid Nematodes of Sheep. Journal of Ethnopharmacology, 114, 86-91.

[44]   Foster, S. and Duke, J.A. (1990) A Field Guide to Medicinal Plants: Eastern and Central North America. The Peterson Field Guide Series.

[45]   Barros, L., Pereira, E., Calhelha, R.C., Dueñas, M., Carvalho, A.M., Santos-Buelga, C. and Ferreira, I.C. (2013) Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium ambrosioides L. Journal of Functional Foods, 5, 1732-1740.

[46]   Chekem, M.S.G., Lunga, P.K., Tamokou, J.D.D., Kuiate, J.R., Tane, P., Vilarem, G. and Cerny, M. (2010) Antifungal Properties of Chenopodium ambrosioides Essential Oil against Candida Species. Pharmaceuticals, 3, 2900-2909.

[47]   Gadano, A., Gurni, A., López, P., Ferraro, G. and Carballo, M. (2002) In Vitro Genotoxic Evaluation of the Medicinal plant Chenopodium ambrosioides L. Journal of Ethnopharmacology, 81, 11-16.

[48]   Hegazy, A. and Farrag, H. (2007) Allelopathic Potential of Chenopodium ambrosioides on Germination and Seedling Growth of Some Cultivated and Weed Plants. Global Journal of Biotechnology and Biochemistry, 2, 1-9.

[49]   Kumar, R., Mishra, A.K., Dubey, N. and Tripathi, Y. (2007) Evaluation of Chenopodium ambrosioides Oil as a Potential Source of Antifungal, Antiaflatoxigenic and Antioxidant Activity. International Journal of Food Microbiology, 115, 159-164.

[50]   Spengler, M., Leroux, M., Svetaz, M., Contesti, J., Parente, F. and Bertoluzzo, S. (2007) Nifedipine Effect on Red Cell Rheological Properties in Patients with Systemic Scleroderma. Clinical Hemorheology and Microcirculation, 36, 105-110.

[51]   Kapadia, G.J., Chung, E., Ghosh, B., Shukla, Y., Basak, S., Morton, J. and Pradhan, S. (1978) Carcinogenicity of Some Folk Medicinal Herbs in Rats. Journal of the National Cancer Institute, 60, 683-686.

[52]   Paul, U.V., Lossini, J.S., Edwards, P.J. and Hilbeck, A. (2009) Effectiveness of Products from Four Locally Grown Plants for the Management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (both Coleoptera: Bruchidae) in Stored Beans under Laboratory and Farm Conditions in Northern Tanzania. Journal of Stored Products Research, 45, 97-107.

[53]   Barbosa, S.F., Leite, G.L., Alves, S.M., Nascimento, A.F., D’ávila, V.A. and Costa, C.A. (2011) Insecticide Effects of Ruta graveolens, Copaifera langsdorffii and Chenopodium ambrosioides against Pests and Natural Enemies in Commercial Tomato Plantation. Papers of the Medical Faculty of Palacky University in Olomouc, Acta Scientiarum Agronomy, 33, 37-43.

[54]   Dembitsky, V., Shkrob, I. and Hanus, L.O. (2008) Ascaridole and Related Peroxides from the Genus Chenopodium. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc, 152, 209-215.

[55]   Cavalli, J.F., Tomi, F., Bernardini, A.F. and Casanova, J. (2004) Combined Analysis of the Essential Oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR Spectroscopy: Quantitative Determination of Ascaridole, a Heat-Sensitive Compound. Phytochemical Analysis, 15, 275-279.

[56]   Kasali, A.A., Ekundayo, O., Paul, C., König, W.A., Eshilokun, A.O. and Ige, B. (2006) 1, 2:3, 4-Diepoxy-p-menthane and 1,4-Epoxy-p-menth-2-ene: Rare Monoterpenoids from the Essential Oil of Chenopodium ambrosioides L. var Ambrosioides Leaves. Journal of Essential Oil Research, 18, 13-15.

[57]   Sánchez-Velásquez, L., Quintero-Gradilla, S., Aragón-Cruz, F. and Pineda-López, M.R. (2004) Nurses for Brosimum alicastrum Reintroduction in Secondary Tropical Dry Forest. Forest Ecology and Management, 198, 401-404.

[58]   Martín-Luengo, M., Yates, M., Martínez Domingo, M., Casal, B., Iglesias, M., Esteban, M. and Ruiz-Hitzky, E. (2008) Synthesis of p-Cymene from Limonene, a Renewable Feedstock. Applied Catalysis B: Environmental, 81, 218-224.

[59]   Duke, J.C. (1982) Revision of Tithonia. Rhodora, 84, 453-522.

[60]   Hui, H.X., Tang, G. and Go, V.L.W. (2009) Hypoglycemic Herbs and Their Action Mechanism. Chinese Medicine, 4, 11-21.

[61]   Heinrich, M., Ankli, A., Frei, B., Weimann, C. and Sticher, O. (1998) Medicinal Plants in Mexico: Healers’ Consensus and Cultural Importance. Social Science & Medicine, 47, 1859-1871.

[62]   Goffin, E., da Cunha, A.P., Ziemons, E., Tits, M., Angenot, L. and Frederich, M. (2003) Quantification of Tagitinin C in Tithonia diversifolia by Reversed-Phase High-Performance Liquid Chromatography. Phytochemical Analysis, 14, 378-380.

[63]   Cutler, H.G. and Cutler, S.J. (1988) Biologically Active Natural Products: Agrochemical. CRC Press, Boca Raton, London, New York, Washington DC, 299.

[64]   García, A. and Delgado, G. (2006) Constituents from Tithonia diversifolia. Stereochemical Revision of 2α-Hydroxytirotundin. Journal of the Mexican Chemical Society, 50, 180-183.

[65]   Sasikala, K. and Narayanan, R. (1998) Numerical Evaluation of Trichome Characters in Certain Members of Asteraceae. Phytomorphology, 48, 67-81.

[66]   Baruah, N.C., Sarma, J.C., Barua, N.C., Sarma, S. and Sharma, R.P. (1994) Germination and Growth Inhibitory Sesquiterpene Lactones and a Flavone from Tithonia diversifolia. Phytochemistry, 36, 29-36.

[67]   Ziémons, E., Goffin, E., Lejeune, R., Angenot, L. and Thunus, L. (2003) Supercritical Fluid Extraction of Tagitinin C from Tithonia diversifolia: Comparison of Extraction Yield and Selectivity between Supercritical Fluid and Classical Methods of Extraction.