JFCMV  Vol.2 No.4 , October 2014
Experimental and Numerical Investigation of a Rayleigh-Bénard Convection Affected by Coriolis Force
ABSTRACT
In this paper the influence of an impressed Coriolis force field on the configuration of a turbulent Rayleigh-Bénard convection problem is investigated in an experimental and numerical study. The main purpose of both studies lie on the analysis of a possible stabilising effect of a Coriolis acceleration on the turbulent unsteady structures inside the fluid. The relative Coriolis acceleration which is caused in the atmosphere by the earth rotation is realised in the experimental study by a uniform-rotational movement of the setup in a large-scale centrifuge under hyper-gravity. The same conditions as in the atmosphere in the beginning of a twister or hurricane should be realised in the experiment. The investigated Rayleigh numbers lie between 2.33 × 106 ≤ Ra ≤ 4.32 × 107.

Cite this paper
Zimmermann, C. and Groll, R. (2014) Experimental and Numerical Investigation of a Rayleigh-Bénard Convection Affected by Coriolis Force. Journal of Flow Control, Measurement & Visualization, 2, 165-172. doi: 10.4236/jfcmv.2014.24018.
References
[1]   Bénard, H. (1900) Les tourbillons cellulaires dans une nappe liquide. Revue Générale des Sciences Pures et Appliquées, 11, 1261-1271, 1309-1328.

[2]   Rayleigh, Lord (1916) On the Convective Currents in a Horizontal Layer of Fluid When the Higher Temperature Is on the under Side. Philosophical Magazine, Series 6, 32, 529-546.

[3]   Maystrenko, A., Resagk, C. and Thess, A. (2007) Structure of the Thermal Boundary Layer for Turbulent Rayleigh- Bénard Convection of Air in a Long Rectangular Enclosure. Physical Review E, 75, 066303-1-066303-11. http://dx.doi.org/10.1103/PhysRevE.75.066303

[4]   Ebert, A., Resagk, C. and Thess, A. (2008) Experimental Study of Temperature Distribution and Local Heat Flux for Turbulent Rayleigh-Bénard Convection of Air in a Long Rectangular Enclosure. Journal of Heat and Mass Transfer, 51, 4238-4248. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.017

[5]   Du Puits, R., Resagk, C., Tilgner, A., Busse, F.H. and Thess, A. (2007) Structure of Thermal Boundary Layers in Turbulent Rayleigh-Bénard Convection. Journal of Fluid Mechanics, 572, 231-254.
http://dx.doi.org/10.1017/S0022112006003569

[6]   Shishkina, O. and Wagner, C. (2006) Analysis of Thermal Dissipation Rates in Turbulent Rayleigh-Bénard Convection. Journal of Fluid Mechanics, 546, 51-60. http://dx.doi.org/10.1017/S0022112005007408

[7]   Sutherland, W. (1893) The Viscosity of Gases and Molecular Force. Philosophical Magazine, Series 5, 36, 507-531. http://dx.doi.org/10.1080/14786449308620508

[8]   Zimmermann, C., Groll, R. and Rath, J.H. (2012) Modelling Turbulent Heat Transfer of a Rayleigh-Bénard Problem with Compressible Large-Eddy Simulation. In: Hanjalic, K., Nagano, Y., Borello, D. and Jarkirlic, S., Eds., Proceedings of the Seventh International Symposium On Turbulence, Heat and Mass Transfer, ICHMT, Begell House Inc., West Redding, USA, 615-623.
http://dx.doi.org/10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.480

[9]   Mori, N. and Chang, K.A. (2002) Introduction to MPIV-PIV Toolbox in MATLAB® - Version 0.965,
http://www.oceanwave.jp/softwares/mpiv/index.php?FrontPage

[10]   King, E.M., Stellmach, S., Noir, J., Hansen, U. and Aurnou, J.M. (2009) Boundary Layer Control of Rotating Convection Systems. Nature, 457, 301-304. http://dx.doi.org/10.1038/nature07647

[11]   Grossmann, S. and Lohse, D. (2000) Scaling in Thermal Convection: An Unifying Theory. Journal of Fluid Mechanics, 407, 27-56. http://dx.doi.org/10.1017/S0022112099007545

[12]   Stevens, R.J.A.M., van der Poel, E.P., Grossmann, S. and Lohse, D. (2013) The Unifying Theory of Scaling in Thermal Convection: The Updated Prefactors. Journal of Fluid Mechanics, 730, 295-308.
http://dx.doi.org/10.1017/jfm.2013.298

 
 
Top