Alternative Approaches of Convolution within Network Calculus

Show more

References

[1] Le Boudec, J.-Y. and Thiran, P. (2001) Network Calculus. Springer Verlag LNCS 2050.

[2] Cruz, R. (1991) A Calculus for Network Delay, Part I: Network Elements in Isolation. IEEE Transactions on Information Theory, 37, 114-131.

[3] Cruz, R. (1991) A Calculus for Network Delay, Part Ii: Network Analysis. IEEE Transactions on In-formation Theory, 37, 132-141.

[4] Parekh, A.K. and Gallager, R.G. (1993) A Generalized Processor Sharing Approach to Flow Control in Integrated Service Networks: The Single-Node Case. IEEE/ACM Transactions on Networking, 1, 344-357.
http://dx.doi.org/10.1109/90.234856

[5] Kerschbaum, S., Hielscher, K., Klehmet, U. and German, R. (2012) Network Calculus: Application to an Industrial Automation Network. In: MMB and DFT 2012 Workshop Proceedings (16th GI/ITG Conference), Kaiserslautern, March 2012.

[6] Herpel, T., Hielscher, K., Klehmet, U. and German, R. (2009) Stochastic and Deterministic Performance Evaluation of Automotive CAN Communication. Computer Networks, 53, 1171-1185.
http://dx.doi.org/10.1016/j.comnet.2009.02.008

[7] Fidler, M. (2010) A Survey of Deterministic and Stochastic Service Curve Models in the Network Calculus. IEEE Communications Surveys & Tutorials, 12, 59-86.

[8] Rockafellar, R.T. (1970) Convex Analysis. Princeton University Press.

[9] Pandit, K., Schmitt, J., Kirchner, C. and Steinmetz, R. (2004) Optimal Allocation of Service Curves by Exploiting Properties of the Min-Plus Convolution. Technical Report.