IJG  Vol.5 No.11 , October 2014
Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line
Abstract: The Barombi Mbo Maar (BMM), which is the largest maar in Cameroon, possesses about 126 m-thick well-preserved pyroclastic deposits sequence in which two successive paleosoil beds have been identified. The maar was thought to have been active a million years ago. However, layers stratigraphically separated by the identified paleosoils have been dated to shed lights on its age and to reconstruct the chronology of its past activity. The results showed that the BMM formed through three eruptive cycles: the first ~0.51 Ma ago, the second at ~0.2 Ma and the third ~0.08 Ma B.P. The ages indicate that the BMM maar-forming eruptions were younger than a million years. The findings also suggested that the maar is polygenetic. At a regional scale, the eruptive events would have occurred during some volcanic manifestations at Mt Manengouba and Mt Cameroon. Therefore, with the decrease in the recurrence time of eruptions from ~0.3 Ma to 0.1 Ma, and given the possible relation between its eruptive events and those of its neighboring polygenetic volcanoes, the BMM is expected to erupt within the next 20 ka.
Cite this paper: Tchamabé, B. , Ohba, T. ,  , I. , Ooki, S. , Youmen, D. , Owona, S. , Tanyileke, G. and Hell, J. (2014) Temporal Evolution of the Barombi Mbo Maar, a Polygenetic Maar-Diatreme Volcano of the Cameroon Volcanic Line. International Journal of Geosciences, 5, 1315-1323. doi: 10.4236/ijg.2014.511108.

[1]   McClintock, M., White, J.D.L., Houghton, B.F. and Skilling, I.P. (2008) Physical Volcanology of a Large Crater-Complex Formed during the Initial Stages of Karoo Flood Basalt Volcanism, Sterkspruit, Eastern Cape, South Africa. Journal of Volcanology and Geothermal Research, 172, 93-111.

[2]   Walker, G.P.L. (2000) Basaltic Volcanoes and Volcanic Systems. In: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. and Stix, J., Eds., Encyclopedia of Volcanoes, Academic Press, New York, 283-290.

[3]   Lorenz, V. (2007) Syn- and Post-Eruptive Hazards of Maar-Diatreme Volcanoes. Journal of Volcanology and Geothermal Research, 159, 285-312.

[4]   Platevoet, B., Scaillet, S., Guillou, H., Blamart, D., Nomade, S., Massault, M., Poisson, A., Elitok, O., Ozgür, N., Yagmurlu, F. and Yilmaz, K. (2008) Pleistocene Eruptive Chronology of the GolcükVolcano, Isparta Angle, Turkey. Quaternaire, 19, 147-156.

[5]   Giaccio, B., Marra, F., Hajdas, I., Karner, D.B., Renne, P.R. and Sposato, A. (2009) 40Ar/39Ar and 14C Geochronology of the Albano Maar Deposits: Implications for Defining the Age and Eruptive Style of the Most Recent Explosive Activity at ColliAlbani Volcanic District, Central Italy. Journal of Volcanology and Geothermal Research, 185, 203-213.

[6]   Alvarado, G.E., Soto, G.J., Salani, F.M., Ruiz, P. and de Mendoza, L.H. (2010) The Formation and Evolution of Hule and Río Cuarto Maars, Costa Rica. Journal of Volcanology and Geothermal Research, 201, 342-356.

[7]   Chako Tchamabe, B., Youmen, D., Owona, S., Issa, Ohba, T., Nemeth, K., Ngapna, M.N., Asaah, A.N.E., Aka, F.T., Tanyileke, G. and Hell, J.V. (2013) Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constrains from Volcanic Facies Analysis. Central European Journal of Geosciences, 5, 480-496.

[8]   Cornen, G., Bandet, Y., Giresse, P. and Maley, J. (1992) The Nature and Chronostratigraphy of Quaternary Pyroclastic Accumulations from Lake Barombi-Mbo (West Cameroon). Journal of Volcanology and Geothermal Research, 51, 357-374.

[9]   Aka, F.T. (2000) Noble Gas Systematics and K-Archronology: Implications for the Geochemical and Geotectonic Evolution of the Cameroon Volcanic Line, West Africa. Doctoral Thesis, Okayama University, Okayama.

[10]   Tamen, J., Nkoumbou, C., Mouafo, L., Reusser, E. and Tchoua, F.M. (2007) Petrology and Geochemistry of Monogenetic Volcanoes of the Barombi Koto Volcanic Field (Kumba Graben, Cameroon Volcanic Line): Implications for Mantle Source Characteristics. ComptesRendus de Geosciences, 339, 799-809.

[11]   Teitchou, M.I., Gregoire M., Dantas, C. and Tchoua F.M. (2007) The Upper Mantle Beneath the Kumba Plain (Cameroon Line), Documented by Spinel Peridotite Xenolith in Basaltic Lava. Comptes Rendus de Geosciences, 33, 101-109. (in French) Le manteau superieur à l’aplomb de la plaine de Kumba (ligne du Cameroun), d’apres les enclaves de peridotites à spinelles dans les laves basaltiques.Comptes Rendus de Geosciences, 33, 101-109.

[12]   Dumort, J.-C. (1968) Carte Geologique et Notice explicative sur la feuille Douala-ouest et carte geologique de reconnaissance au 1:500,000. Dir. Mines etGeologie Cameroun. BRGM, Paris.

[13]   Yagi (2006) Manual Mineral Separation for K-Ar Dating Hikaru. Geotechnical, Founding Preparation (Hiruzen Geochronology Institute 10th Anniversary Commemorative Special), 19-25. (in Japanese)

[14]   Nagao, K., Nishi, K., Si, Y. and Itaya, T. (1984) K-Ar Dating of Affiliates of the Ogata Only Pill. Okayama University Hiruzen Research Institute, 9, 19-38. (in Japanese)

[15]   Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon Isotope Analysis by a Newly Developed Mass Spectrometric System for K-Ar Dating. Mineralogical Journal, 15, 203-221.

[16]   Steiger, R.H. and Jager, E. (1977) Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 26, 359-362.

[17]   Li, D., Chen, W. and Li, Q. (2000) K-Ar Age of Young Volcanic Rocks and Excess Argon. Chinese Science Bulletin, 45, 659-664.

[18]   Maley, J., Livignstone, D.A., Giresse, P., Brenac, P., Kling, G., Stager, C., Thouveny, N., Kelts, K., Haag, M., Fournier, M., Bandet, Y., Williamson, D. and Zogning, A. (1991) West Cameroon Quaternary Lacustrine Deposits: Preliminary Results. Journal of African Earth Sciences (and the Middle East), 12, 147-157.

[19]   Valentine, G. (2012) Shallow Plumbing Systems for Small-Volume Basaltic Volcanoes, 2: Evidence from Crustal Xenoliths at Scoria Cones and Maars. Journal of Volcanology and Geothermal Research, 223-224, 47-63.

[20]   Nemeth, K., Cronin, S.J., Haller. M.J., Brenna, M. and Csillag, G. (2010) Modern Analogues for Miocene to Pleistocene Alkali Basaltic Phreatomagmatic Fields in the Pannonian Basin: “Soft-Substrate” to “Combined” Aquifer Controlled Phreatomagmatism in Intraplate Volcanic Fields Research Article. Central European Journal of Geosciences, 2, 339-361.

[21]   Lucas, Y. and Chawel, A. (1992) Soil Formation in Tropically Weathered Terrains. In: Butt, C.R.M. and Zeegers, H., Eds., Regolith Exploration Geochemistry in Tropical and Subtropical Terrains, Handbook of Exploration Geochemistry, Vol. 4, Elsevier, Amsterdam, 57-77.

[22]   KagouDongmo, A., Wandji, P., Pouclet, A., Vicat, J., Cheilletz, A., Nkouathio, D.G., Alexandrov, P. and Tchoua, F.M. (2001) Volcanological Evolution of the Mount Manengouba (Cameroon Line), New Petrographical, Geochemical, and Geochronological Data. ComptesRendus de l’Academie des Sciences Series IIA Earth and Planetary Science, 333, 155-162.

[23]   Nkouathio, D.G., KagouDongmo, A., Bardintzeff, J.M., Wandji, P., Bellon, H. and Pouclet, A. (2008) Evolution of Volcanism in Graben and Horst Structures along the Cenozoic Cameroon Line (Africa): Implications for Tectonic Evolution and Mantle Source Composition. Mineralogy and Petrology, 94, 287-303.

[24]   Aka, F.T., Nagao, K., Kusakabe, M., Sumino, H., Tanyileke, G., Ateba, B. and Hell, J. (2004) Symmetrical Helium Isotope Distribution on the Cameroon Volcanic Line, West Africa. Chemical Geology, 203, 205-223.