AE  Vol.2 No.4 , October 2014
Malpighian Tubules in Larvae of Diatraea saccharalis (Lepidoptera; Crambidae): A Morphological Comparison between Non-Parasitized and Parasitized by Cotesia flavipes (Hymenoptera; Braconidae)
ABSTRACT
In Diatraea saccharalis larvae, the Malpighian tubules are found along the digestive tube, extending from the middle mesenteric region to the end of the posterior intestine, where they come in contact with the rectum to form the cryptonephridium. Scanning and transmission electron microscopy of non-parasitized and parasitized larvae by Cotesia flavipes have indicated that the tubules consist of secretory and reabsorption cells. In parasitized larvae, the occurrence of hemocytes and teratocytes around the tubules is indicative of their role in immunological defense; however, they were not observed in non-parasitized larvae. At day 9 of parasitism, the mitochondria-containing vacuoles and myelin-like figures show signs of degeneration. The results of this study have confirmed that C. flavipes manipulates the physiology and biochemistry of D. saccharalis because the Malpighian tubules of the parasitized larvae remain active until the parasitoid completes its pupal stage and is released from the host organism.

Cite this paper
Rigoni, G. and Conte, H. (2014) Malpighian Tubules in Larvae of Diatraea saccharalis (Lepidoptera; Crambidae): A Morphological Comparison between Non-Parasitized and Parasitized by Cotesia flavipes (Hymenoptera; Braconidae). Advances in Entomology, 2, 202-210. doi: 10.4236/ae.2014.24029.
References
[1]   Wigglesworth, V.B. (1974) The Principles of Insect Physiology. 7th Edition, Chapman and Hall, London, 827 p.

[2]   Chapman, R.F. (1998) The Insects: Structure and Function. The English Universities Press, New York, 788 p. http://dx.doi.org/10.1017/CBO9780511818202

[3]   Martinelli, A. (1998) Histoquímica e Ultra-Estrutura dos Túbulos de Malpighi de Operárias de Atta sexdens rubropilosa Forel, 1908 (Hymenoptera: Formicidae). Dissertação Mestrado. Universidade Estadual Paulista, Rio Claro.

[4]   Triplehorn, C.A. and Johnson, N.F. (2011) Estudo dos Insetos—Traduação da 7a Ediação de Borror and Delong’s Introduction to the Study of Insects. São Paulo, Cengage Learning, 808 p.

[5]   Rafael, J.A., Melo, G.A.R., Carvalho, C.J.B., Casari, S.A. and Constantino, R. (2012) Insetos do Brasil: Diversidade e Taxonomia. Editora Ltda-ME, Holos.

[6]   Cruz-Landim, C. (2009) Abelhas: Morfologia e Funação de Sistemas. Ed UNESP, São Paulo, 384 p.

[7]   Maddrell, S.H.P., Herman, W., Mooney, R.L. and Overton, J.A. (1991) 5-Hydroxytryptamine: A Second Diuretic Hormone in Rhodnius prolixus. Journal of Experimental Biology, 156, 557-566.

[8]   Beyenbach, K.W., Skaer, H. and Dow, J.A.T. (2010) The Developmental, Molecular, and Transport Biology of Malpighian Tubules. Annual Review Entomology, 55, 351-374.
http://dx.doi.org/10.1146/annurev-ento-112408-085512

[9]   Delakorda, S.L., Letofsky-Papst, I., Novak, T., Hofer, F. and Pabst, M.A. (2009) Structure of the Malpighian Tubule Cells and Annual Changes in the Structure and Chemical Composition of Their Spherites in the Cave Cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria). Arthropod Structural Development, 38, 315-327. http://dx.doi.org/10.1016/j.asd.2009.02.001

[10]   Bution, M.L., Caetano, F.H. and Zara, F.J. (2007) Contribuiação dos Túbulos de Malpighi para a Manutenação de Micoorganismos Simbiontes em Cephalotini. Biológico, 69, 339-343.

[11]   Arab, A. and Caetano, F.H. (2002) Segmental Specializations in the Malpighian Tubules of the Fire Ant Solenopsis saevissima Forel 1904 (Myrmicinae): An Electron Microscopical Study. Arthropod Structure & Development, 30, 281- 292. http://dx.doi.org/10.1016/S1467-8039(01)00039-1

[12]   Martoja, R. and Ballan-Dufrançais, C. (1984) The Ultrastructure of the Digestive and Excretory Organs. In: King, R.C. and Akai, H., Eds., Insect Ultrastructure, Vol. 2, Plenum Press, New York, 119-261.
http://dx.doi.org/10.1007/978-1-4613-2715-8_6

[13]   Maddrell, S.H.P. and O’Donnell, M.J. (1992) Insect Malpighian Tubules: V. ATPase Action in Ion and Fluid Transport. Journal of Experimental Biology, 172, 417-429.

[14]   Ryerse, J.S. (1979) Developmental Changes in Malpighian Tubule Cell Structure. Tissue and Cell, 11, 533-551. http://dx.doi.org/10.1016/0040-8166(79)90061-2

[15]   Spring, J.H., Robichaux, R.S. and Hamlin, J.A. (2009) The Role of Aquaporins in Excretion in Insects. Journal of Experimental Biology, 212, 358-362. http://dx.doi.org/10.1242/jeb.024794

[16]   O’Donnell, M.J., Maddrell, S.H.P. and Gardiner, B.O.C. (1983) Transport of Uric Acid by the Malpighian Tubules of Rhodnius prolixus and the Other Insects. Journal of Experimental Biology, 103, 169-184.

[17]   Cordeiro, B.A. (2007) Efeitos patológicos nos túbulos de Malpighi de Anticarsia gemmatalis causados pela infecação por recombinantes do baculovírus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV). Dissertaação (Mestrado em Biologia Molecular), Universidade de Brasília, Brasília, 90 p.

[18]   Bradley, T.J. (1985) The Excretory Sistem: Structure and Function. Insect Physiology, Biochemistry and Pharmacology, 4, 421-465.

[19]   Schuab, G.A. and Schnitker, A. (1988) Influence of Blastocrithidia triatome (Trypanosomatidae) on the Reduviid Bug Triatoma infestans: Alterations in the Malpighian Tubules. Parasitology Research, 75, 88-97. http://dx.doi.org/10.1007/BF00932706

[20]   Pinheiro, D.O., Silva, M.D. Gregório, E.A. (2010) Mitochondria in the Midgut Epithelial Cells of Sugarcane Borer Parasitized by Cotesia flavipes (Cameron, 1891). Brazilian Journal of Biology, 70, 163-169.
http://dx.doi.org/10.1590/S1519-69842010000100023

[21]   Pinheiro, D.O., Conte, H. and Gregório, E.A. (2008) Spherites in the Midgut Epithelial Cells of the Sugarcane Borer Parasitized by Cotesia flavipes. Biocell, 32, 61-67.

[22]   Pinheiro, D.O., Zucchi, T.D., Zucchi, O.L.A.D., Nascimento Filho, V.F., Almeida, E. and Cônsoli, F.L. (2010) Iorganic Elements in the Fat Bodies of Diatraea saccharalis (Lepidoptera: Crambidae) Larvae Parasitized by Cotesia flavipes (Hymenoptera: Braconidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 156, 273-278. http://dx.doi.org/10.1016/j.cbpb.2010.04.004

[23]   Roc, R.M., Hammond Jr., A.M., Reagan, T.E. and Hensley, S.D. (1981) A Bibliography of the Sugarcane Borer Diatraea saccharalis (Fabricius) 1887-1980. US Agricultural Research Service (Southern Region), US Department of Agriculture, New Orleans.

[24]   William, J.R., Metcalfe, J.R., Mungomery, R.W. and Mathes, R. (1969) Pests of Sugarcane. Elsevier Publ. Co., New York, 586 p.

[25]   Guagliumi, P. (1973) Pragas da cana-de-açúcar no nordeste do Brasil. Instituto do Açúcar e do álcool, Rio de Janeiro.

[26]   Hensley, S.D. and Hammond, A.M. (1968) Laboratory Techniques for Rearing the Sugarcane Borer on Artificial Diet. Journal of Economical Entomology, 61, 1742-1743.

[27]   Gullan, P.J. and Cranston, P.S. (2010) The Insects: An Outline of Entomology. 4th Edition, Willey Blackwell Publishing, Hoboken, 584 p.

[28]   Richards, O.W. and Davies, R.G. (1994) Imm’s General Textbook of Entomology, Vol. 2. 10a Edition, Chapman and Hall, London.

[29]   Levy, S.M., Falleiros, A.F., Moscardi, F., Gregório, E.A. and Toledo, L.A. (2004) Morphological Study of the Hindguth in Larvae of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Neotropical Entomology, 33, 427-431. http://dx.doi.org/10.1590/S1519-566X2004000400005

[30]   Rigoni, G.M., Tomotake, M.E.M. and Conte, H. (2004) Morphology of Malpighian Tubules of Diatraea saccharalis (F.) (Lepidoptera: Crambidae) at Final Larval Development. Cytologia, 69, 1-6.
http://dx.doi.org/10.1508/cytologia.69.1

[31]   Green, L.F. (1981) Cryptonephric Malpighian Tubule System in a Dipteran Larva, the New Zeland Glow-Worm, Arachnocampa luminosa (Diptera: Mycetophilidae): A Structural Study. Chromosoma, 83, 619-643.

[32]   Bradley, T.J., Sturat, A.M. and Satir, P. (1982) The Ultrastructure of the Larval Malpighian Tubule of a Saline-Water Mosquito. Scanning Electron Microscopy, 14, 759-773.

[33]   Hazelton, S.R., Felegenhauer, B.E. and Spring, J.H. (2001) Ultrastructural Changes in the Malpighian Tubules of the House Cricket, Acheta domesticus, at the Onset of Diuresis: A Time Study. Journal of Morphology, 247, 80-92.
http://dx.doi.org/10.1002/1097-4687(200101)247:1<80::AID-JMOR1004>3.0.CO;2-X

[34]   Martine, S.V., Nascimento, S.B. and Morales, M.M. (2007) Rhodnius prolixus Malpighian Tubules and Control of Diuresis by Neurohormones. Anais da Academia Brasileira de Ciências, 79, 87-95.
http://dx.doi.org/10.1590/S0001-37652007000100011

[35]   Rivers, D.B., Ergin, E. and Uçkan, F. (2007) Cell Death in the Host-Parasitoid Relationship. In: Corvin, A.J., Ed., New Developments in Cell Apoptosis Research, Nova Science Publishers, New York, 69-96, 287 p.

[36]   Wu, G.X., Gao, X., Ye, G.Y., Li, K., Hu, C. and Cheng, J.A. (2005) Ultrastructural Alterations in Midgut and Malpighian Tubules of Boettcherisca peregrine Exposure to Cadmium and Copper. Tissue and Cell, 37, 223-232.

[37]   Blunn, M.S. (1985) Fundamentals of Insect Physiology. John Wiley & Sons, New York, 112.

[38]   Nicholls, S.P. (1983) Ultrastructural Evidence for Paracellular Fluid Flow in the Malpighian Tubules of a Larval Mayfly. Tissue and Cell, 15, 627-637. http://dx.doi.org/10.1016/0040-8166(83)90012-5

[39]   Green, L.F., Berqquist, P.R. and Bullivant, S. (1980) The Structure and Function of the Smooth Septate Junction in a Transporting Epithelium: The Malpighian Tubules of the New Zealand Glow-Worm Arachnocampa luminosa. Tissue and Cell, 12, 365-381.

[40]   Hernández, C.S., Gutiérrez, A.M., Vargas-Janzen, A., Noria, F., González, E., Ruiz, V. and Whittembury, G. (2002) Fluid Secretion in Rhodnius upper Malpighian Tubules (UMT): Water Osmotic Permeabilities and Morphometric Studies. Journal of Morphology, 251, 73-82.

[41]   Fermino, F., Conte, H. and Falco, J.R. (2010) Analysis of Nucleus Activity in Malpighian Tubules of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) Larvae by Critical Electrolyte Concentration. Neotropical Entomology, 39, 568-571. http://dx.doi.org/10.1590/S1519-566X2010000400016

[42]   Quicke, D.L.J. (1997) Parasitic Wasps. Chapman and Hall, London, 470 p.

[43]   Sheng, L., Falabela, P., Kuriachan, I., Vinson, S.B., Borst, D.W., Malva, C. and Pennacchio, F. (2003) Juvenile Hormone Synthesis, Metabolism, and Resulting Haemolynph Titre in Heliothis virescens Larvae Parasitized by Toxoneuron nigriceps. Journal of Insect Physiology, 49, 1021-1030.
http://dx.doi.org/10.1016/S0022-1910(03)00185-9

[44]   Pennacchio, F. and Strand, M.R. (2006) Evolution of Developmental Strategies in Parasitic Hymenoptera. Annual Review of Entomology, 51, 233-258.
http://dx.doi.org/10.1146/annurev.ento.51.110104.151029

[45]   Pinto, A.S., Garcia, J.F. and Botelho, P.S.M. (2006) Controle biológico de pragas da cana-de-açúcar. In: Pinto, A.S., Nava, D.E., Rossi, M.M. and Malerbo-Souza, D.T., Eds., Controle biológico de pragas: Na prática, FEALQ, Piracicaba, 65-74, 287 p.

[46]   Jervis, M.A., Ellers, J. and Harvey, J.A. (2008) Resource Acquisition, Allocation, and Utilization in Parasitoid Reproductive Strategies. Annual Review of Entomology, 53, 361-385.
http://dx.doi.org/10.1146/annurev.ento.53.103106.093433

[47]   Lavine, M.D. and Strand, M.R. (2002) Insect Hemocytes and Their Role in Immunity. Insect Biochemistry and Molecular Biology, 32, 1295-1309. http://dx.doi.org/10.1016/S0965-1748(02)00092-9

[48]   Beckage, N.E. and Gelman, D.B. (2004) Wasp Parasitoid Disruption of Host Development: Implications for New Biologically Based Strategies for Insect Control. Annual Review of Entomology, 49, 299-330.
http://dx.doi.org/10.1146/annurev.ento.49.061802.123324

[49]   Lopes, C.S. (2009) Regulaço do desenvolvimento e resposta immune de lagartas de Diatraea saccharalis (Fabricius) (Lepodoptera: Cambridae) por Cotesia Flavipes (Cameron) (Hymenoptera: Braconidae). Dissertaço Escola de Agricultura Luiz de Queiroz, Piracicaba.

[50]   Nunes, C.C.C. and Gregório, E.A. (2005) Ultrastructural and Cytochemical Characterization of the Oenocytoid in Larvae of Diatraea saccharalis (Lepidoptera: Pyralidae) Parasitized by the Wasp Cotesia flavipes (Hymenoptera: Braconidae). Naturalia Rio Claro, 30, 28-33.

[51]   Basio, N.A. and Kim, Y. (2005) A Short Review of Teratocytes and Their Characters in Cotesia plutellae (Braconidae: Hymenoptera). Journal of Asia-Pacific Entomology, 8, 211-217.
http://dx.doi.org/10.1016/S1226-8615(08)60093-X

[52]   Dahlman, D.H. and Vinson, S.B. (1993) Teratocytes: Developmental and Biochemical Characteristics. In: Beckage, N.E., Thompson, S.N. and Federici, B.A., Eds., Parasites and Pathogens of Insects, Vol. 1, Academic Press, New York, 145-166.

[53]   Takeda, K.I. (2009) Obtenço de seqüências expressas em túbulos de Malpighi de híbridos de bicho-da-seda infectados pelo “Bombyx mori” nucleopoliedrovírus BmMNPV. Dissertaço Mestrado em Genética e Melhoramento, UEM, Maringá.

 
 
Top