JBiSE  Vol.7 No.12 , October 2014
Microfluidic Approaches for Cancer Cell Separation: Review
ABSTRACT
This article reviews the recent developments in microfluidic technologies for in vitro cancer diagnosis. We summarize the working principles and experimental results of microfluidic platforms for cancer cell detection, and separation based on magnetic activated micro-sorting, and differences in cellular biophysics (e.g., cell size and dielectrophoresis (DEP)).

Cite this paper
Saeed, O. , Li, R. and Deng, Y. (2014) Microfluidic Approaches for Cancer Cell Separation: Review. Journal of Biomedical Science and Engineering, 7, 1005-1018. doi: 10.4236/jbise.2014.712098.
References
[1]   Ruddon, R.W. and Ebrary Inc. (2007) Cancer Biology. 3rd Edition, Oxford University Press, New York.

[2]   Jemal, A., Siegel, R., Xu, J.Q. and Ward, E. (2010) Cancer Statistics. A Cancer Journal for Clinicians, 60, 277-300.
http://dx.doi.org/10.3322/caac.20073

[3]   Bannasch, P. (1992) Cancer Diagnosis: Early Detection. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-76899-6

[4]   Dunn, B.K., Verma, M. and Umar, A. (2003) Epigenetics in Cancer Prevention: Early Detection and Risk Assessment. Annals of the New York Academy of Sciences, 983, 1-4.

[5]   Armakolas, A., Panteleakou, Z., Nezos, A., Tsouma, A., Skondra, M., Lembessis, P., Pissimissis, N. and Koutsilieris, M. (2010) Detection of the Circulating Tumor Cells in Cancer Patients. Future Oncology, 6, 1849-1856.
http://dx.doi.org/10.2217/fon.10.152

[6]   Zieglschmid, V., Hollmann, C. and Bocher, O. (2005) Detection of Disseminated Tumor Cells in Peripheral Blood. Critical Reviews in Clinical Laboratory Sciences, 42, 155-196.
http://dx.doi.org/10.1080/10408360590913696

[7]   Young, E.W.K. and Beebe, D.J. (2010) Fundamentals of Microfluidic Cell Culture in Controlled Microenvironments. Chemical Society Reviews, 39, 1036-1048.
http://dx.doi.org/10.1039/b909900j

[8]   Gascoyne, P.R.C. and Vykoukal, J. (2002) Particle Separation by Dielectrophoresis. Electrophoresis, 23, 1973-1983.
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1

[9]   Gossett, D.R., Weaver, W.M., Mach, A.J., Hur, S.C., Tse, H.T.K., Lee, W., Amini, H. and Di Carlo, D. (2010) Label-Free Cell Separation and Sorting in Microfluidic Systems. Analytical and Bioanalytical Chemistry, 397, 3249-3267.
http://dx.doi.org/10.1007/s00216-010-3721-9

[10]   Didar, T.F. and Tabrizian, M. (2010) Adhesion Based Detection, Sorting and Enrichment of Cells in Microfluidic Lab-on-Chip Devices. Lab on a Chip, 10, 3043-3053.
http://dx.doi.org/10.1039/c0lc00130a

[11]   Pratt, E.D., Huang, C., Hawkins, B.G., Gleghorn, J.P. and Kirby, B.J. (2011) Rare Cell Capture in Microfluidic Devices. Chemical Engineering Science, 66, 1508-1522.
http://dx.doi.org/10.1016/j.ces.2010.09.012

[12]   Zborowski, M. and Chalmers, J.J. (2011) Rare Cell Separation and Analysis by Magnetic Sorting. Analytical Chemistry, 83, 8050-8056.
http://dx.doi.org/10.1021/ac200550d

[13]   Du, Z., Colls, N., Cheng, K.H., Vaughn, M.W. and Gollahon, L. (2006) Microfluidic-Based Diagnostics for Cervical Cancer Cells. Biosensors and Bioelectronics, 21, 1991-1995.
http://dx.doi.org/10.1016/j.bios.2005.09.005

[14]   Wankhede, S.P., Du, Z., Berg, J.M., Vaughn, M.W., Dallas, T., Cheng, K.H. and Gollahon, L. (2006) Cell Detachment Model for an Antibody-Based Microfluidic Cancer Screening System. Biotechnology Progress, 22, 1426-1433.
http://dx.doi.org/10.1021/bp060127d

[15]   Du, Z., Cheng, K.H., Vaughn, M.W., Collie, N.L. and Gollahon, L.S. (2007) Recognition and Capture of Breast Cancer Cells. Biomed Microdevices, 9, 35-42.
http://www.ncbi.nlm.nih.gov/pubmed/17103049

[16]   Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins, R.G., Haber, D.A. and Toner, M. (2007) Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. Nature, 450, 1235-1239.
http://dx.doi.org/10.1038/nature06385

[17]   Adams, A.A., Okagbare, P.I., Feng, J., Hupert, M.L., Patterson, D., Gottert, J., McCarley, R.L., Nikitopoulos, D., Murphy, M.C. and Soper, S.A. (2008) Highly Efficient Circulating Tumor Cell Isolation from Whole Blood and Label-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor. Journal of the American Chemical Society, 130, 8633-8641.
http://dx.doi.org/10.1021/ja8015022

[18]   Maheswaran, S., Sequist, L.V., Nagrath, S., Ulkus, L., Brannigan, B., Collura, C.V., Inserra, E., Diederichs, S., Iafrate, A.J., Bell, D.W., Digumarthy, S., Muzikansky, A., Irimia, D., Settleman, J., Tompkins, R.G., Lynch, T.J., Toner, M. and Haber, D.A. (2008) Detection of Mutations in EGFR in Circulating Lung-Cancer Cells. The New England Journal of Medicine, 359, 366-377.
http://dx.doi.org/10.1056/NEJMoa0800668

[19]   Wang, S.T., Wang, H., Jiao, J., Chen, K.J., Owens, G.E., Kamei, K.I., et al. (2009) Three-Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angewandte Chemie International Edition, 48, 8970-8973.
http://dx.doi.org/10.1002/anie.200901668

[20]   Gleghorn, J.P., Pratt, E.D., Denning, D., Liu, H., Bander, N.H., Tagawa, S.T., Nanus, D.M., Giannakakou, P.A. and Kirby, B.J. (2010) Capture of Circulating Tumor Cells from Whole Blood of Prostate Cancer Patients Using Geometrically Enhanced Differential Immunocapture (GEDI) and a Prostate-Specific Antibody. Lab on a Chip, 10, 27-29.
http://dx.doi.org/10.1039/b917959c

[21]   Stott, S.L., Hsu, C.H., Tsukrov, D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, S.M., Shah, A.M., Smas, M.E., Korir, G.K., Floyd, F.P., Gilman, A.J., Lord, J.B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L. V., Lee, R.J., Isselbacher, K.J., Maheswaran, S., Haber, D.A. and Toner, M. (2010) Isolation of Circulating Tumor Cells Using a Microvortex-Generating Herringbone-Chip. Proceedings of the National Academy of Sciences of the United States of America, 107, 18392-18397.
http://dx.doi.org/10.1073/pnas.1012539107

[22]   Thierry, B., Kurkuri, M., Shi, J.Y., Lwin, L.E. and Palms, D. (2010) Herceptin Functionalized Microfluidic Polydimethylsiloxane Devices for the Capture of Human Epidermal Growth Factor Receptor 2 Positive Circulating Breast Cancer Cells. Biomicrofluidics, 4, Article ID: 032205.
http://dx.doi.org/10.1063/1.3480573

[23]   Dharmasiri, U., Njoroge, S.K., Witek, M.A., Adebiyi, M.G., Kamande, J.W., Hupert, M.L., Barany, F. and Soper, S.A. (2011) High-Throughput Selection, Enumeration, Electrokinetic Manipulation, and Molecular Profiling of Low-Abundance Circulating Tumor Cells Using a Microfluidic System. Analytical Chemistry, 83, 2301-2309.
http://dx.doi.org/10.1021/ac103172y

[24]   Kurkuri, M.D., Al-Ejeh, F., Shi, J.Y., Palms, D., Prestidge, C., Griesser, H.J., Brown, M.P. and Thierry, B. (2011) Plasma Functionalized PDMS Microfluidic Chips: Towards Point-of-Care Capture of Circulating Tumor Cells. Journal of Materials Chemistry, 21, 8841-8848.
http://dx.doi.org/10.1039/c1jm10317b

[25]   Wang, S.T., Liu, K., Liu, J.A., Yu, Z.T.F., Xu, X.W., Zhao, L.B., Lee, T., Lee, E.K., Reiss, J., Lee, Y.K., Chung, L. W.K., Huang, J.T., Rettig, M., Seligson, D., Duraiswamy, K.N., Shen, C.K.F. and Tseng, H.R. (2011) Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers. Angewandte Chemie International Edition, 50, 3084-3088.
http://dx.doi.org/10.1002/anie.201005853

[26]   Li, N., Tourovskaia, A. and Folch, A. (2003) Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells. Critical Review in Biomedical Engineering, 31, 423-488.

[27]   Zheng, X., Cheung, L.S., Schroeder, J.A., Jiang, L. and Zohar, Y. (2011) A High-Performance Microsystem for Isolating Circulating Tumor Cells. Lab on a Chip, 11, 3269-3276.
http://dx.doi.org/10.1039/c1lc20331b

[28]   Dharmasiri, U., Balamurugan, S., Adams, A.A., Okagbare, P.I., Obubuafo, A. and Soper, S.A. (2009) Highly Efficient Capture and Enumeration of Low Abundance Prostate Cancer Cells Using Prostate-Specific Membrane Antigen Aptamers Immobilized to a Polymeric Microfluidic Device. Electrophoresis, 30, 3289-3300.
http://dx.doi.org/10.1002/elps.200900141

[29]   Phillips, J.A., Xu, Y., Xia, Z., Fan, Z.H. and Tan, W.H. (2009) Enrichment of Cancer Cells Using Aptamers Immobilized on a Microfluidic Channel. Analytical Chemistry, 81, 1033-1039.
http://dx.doi.org/10.1021/ac802092j

[30]   Lin, H.K., Zheng, S.Y., Williams, A.J., Balic, M., Groshen, S., Scher, H.I., Fleisher, M., Stadler, W., Datar, R.H., Tai, Y.C. and Cote, R.J. (2010) Portable Filter Based Microdevice for Detection and Characterization of Circulating Tumor Cells. Clinical Cancer Research, 16, 5011-5018.
http://dx.doi.org/10.1158/1078-0432.CCR-10-1105

[31]   Tan, S.J., Lakshmi, R.L., Chen, P.F., Lim, W.T., Yobas, L. and Lim, C.T. (2010) Versatile Label Free Biochip for the Detection of Circulating Tumor Cells from Peripheral Blood in Cancer Patients. Biosensors and Bioelectronics, 26, 1701-1705.
http://dx.doi.org/10.1016/j.bios.2010.07.054

[32]   Bhagat, A.A.S., Hou, H.W., Li, L.D., Lim, C.T. and Han, J.Y. (2011) Pinched Flow Coupled Shear-Modulated Inertial Microfluidics for High-Throughput Rare Blood Cell Separation. Lab on a Chip, 11, 1870-1878.
http://dx.doi.org/10.1039/c0lc00633e

[33]   Hur, S.C., Mach, A.J. and Di Carlo, D. (2011) High-Throughput Size-Based Rare Cell Enrichment Using Microscale Vortices. Biomicrofluidics, 5, Article ID: 022206.
http://dx.doi.org/10.1063/1.3576780

[34]   Moon, H.S., Kwon, K., Kim, S.I., Han, H., Sohn, J., Lee, S. and Jung, H.I. (2011) Continuous Separation of Breast Cancer Cells from Blood Samples Using Multi-Orifice Flow Fractionation (MOFF) and Dielectrophoresis (DEP). Lab on a Chip, 11, 1118-1125.
http://dx.doi.org/10.1039/c0lc00345j

[35]   Zheng, S.Y., Lin, H.K., Lu, B., Williams, A., Datar, R., Cote, R.J. and Tai, Y.C. (2011) 3D Microfilter Device for Viable Circulating Tumor Cell (CTC) Enrichment from Blood. Biomedical Microdevices, 13, 203-213.
http://dx.doi.org/10.1007/s10544-010-9485-3

[36]   Kwon, K.W., Choi, S.S., Lee, S.H., Kim, B., Lee, S.N., Park, M.C., Kim, P., Hwang, S.Y. and Suh, K.Y. (2007) Label-Free, Microfluidic Separation and Enrichment of Human Breast Cancer Cells by Adhesion Difference. Lab on a Chip, 7, 1461-1468.
http://dx.doi.org/10.1039/b710054j

[37]   Couzon, C., Duperray, A. and Verdier, C. (2009) Critical Stresses for Cancer Cell Detachment in Microchannels. European Biophysics Journal, 38, 1035-1047.

[38]   Lincoln, B., Erickson, H.M., Schinkinger, S., Wottawah, F., Mitchell, D., Ulvick, S., Bilby, C. and Guck, J. (2004) Deformability-Based Flow Cytometry. Cytometry Part A, 59A, 203-209.
http://dx.doi.org/10.1002/cyto.a.20050

[39]   Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H.M., Ananthakrishnan, R., Mitchell, D., Kas, J., Ulvick, S. and Bilby, C. (2005) Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence. Biophysical Journal, 88, 3689-3698.
http://dx.doi.org/10.1529/biophysj.104.045476

[40]   Kim, Y.C., Park, S.J. and Park, J.K. (2008) Biomechanical Analysis of Cancerous and Normal Cells Based on Bulge Generation in a Microfluidic Device. Analyst, 133, 1432-1439.
http://dx.doi.org/10.1039/b805355c

[41]   Hou, H.W., Li, Q.S., Lee, G.Y.H., Kumar, A.P., Ong, C.N. and Lim, C.T. (2009) Deformability Study of Breast Cancer Cells Using Microfluidics. Biomedical Microdevices, 11, 557-564.
http://dx.doi.org/10.1007/s10544-008-9262-8

[42]   Chen, J., Abdelgawad, M., Yu, L.M., Shakiba, N., Chien, W.Y., Lu, Z., Geddie, W.R., Jewett, M.A.S. and Sun, Y. (2011) Electrodeformation for Single Cell Mechanical Characterization. Journal of Micromechanics and Microengineering, 21, Article ID: 054012.

[43]   Chen, J., Zheng, Y., Tan, Q., Shojaei-Baghini, E., Zhang, Y.L., Li, J., Prasad, P., You, L., Wu, X.Y. and Sun, Y. (2011) Classification of Cell Types Using a Microfluidic Device for Mechanical and Electrical Measurement on Single Cells. Lab on a Chip, 11, 3174-3181.
http://dx.doi.org/10.1039/c1lc20473d

[44]   Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R.B. and Di Carlo, D. (2011) Deformability-Based Cell Classification and Enrichment Using Inertial Microfluidics. Lab on a Chip, 11, 912-920.
http://dx.doi.org/10.1039/c0lc00595a

[45]   Labeed, F.H., Coley, H.M., Thomas, H. and Hughes, M.P. (2003) Assessment of Multidrug Resistance Reversal Using Dielectrophoresis and Flow Cytometry. Biophysical Journal, 85, 2028-2034.
http://dx.doi.org/10.1016/S0006-3495(03)74630-X

[46]   Cen, E.G., Dalton, C., Li, Y.L., Adamia, S., Pilarski, L.M. and Kaler, K.V.I.S. (2004) A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant Cells. Journal of Microbiological Methods, 58, 387-401.
http://dx.doi.org/10.1016/j.mimet.2004.05.002

[47]   Broche, L.M., Labeed, F.H. and Hughes, M.P. (2005) Extraction of Dielectric Properties of Multiple Populations from Dielectrophoretic Collection Spectrum Data. Physics in Medicine and Biology, 50, 2267-2274.
http://dx.doi.org/10.1088/0031-9155/50/10/006

[48]   Chin, S., Hughes, M.P., Coley, H.M. and Labeed, F.H. (2006) Rapid Assessment of Early Biophysical Changes in K562 Cells during Apoptosis Determined Using Dielectrophoresis. International Journal of Nanomedicine, 1, 333-337.

[49]   Labeed, F.H., Coley, H.M. and Hughes, M.P. (2006) Differences in the Biophysical Properties of Membrane and Cytoplasm of Apoptotic Cells Revealed Using Dielectrophoresis. Biochimica et Biophysica Acta (BBA), General Subjects, 1760, 922-929.

[50]   Broche, L.M., Bhadal, N., Lewis, M.P., Porter, S., Hughes, M.P. and Labeed, F.H. (2007) Early Detection of Oral Cancer—Is Dielectrophoresis the Answer? Oral Oncology, 43, 199-203.
http://dx.doi.org/10.1016/j.oraloncology.2006.02.012

[51]   Coley, H.M., Labeed, F.H., Thomas, H. and Hughes, M.P. (2007) Biophysical Characterization of MDR Breast Cancer Cell Lines Reveals the Cytoplasm Is Critical in Determining Drug Sensitivity. Biochimica et Biophysica Acta (BBA), General Subjects, 1770, 601-608.

[52]   Duncan, L., Shelmerdine, H., Hughes, M.P., Coley, H.M., Hubner, Y. and Labeed, F.H. (2008) Dielectrophoretic Analysis of Changes in Cytoplasmic Ion Levels Due to Ion Channel Blocker Action Reveals Underlying Differences between Drug-Sensitive and Multidrug-Resistant Leukaemic Cells. Physics in Medicine and Biology, 53, N1-N7.

[53]   Shim, S., Gascoyne, P., Noshari, J. and Hale, K.S. (2011) Dynamic Physical Properties of Dissociated Tumor Cells Revealed by Dielectrophoretic Field-Flow Fractionation. Integrative Biology, 3, 850-862.
http://dx.doi.org/10.1039/c1ib00032b

[54]   Kuo, J.S., Zhao, Y.X., Schiro, P.G., Ng, L.Y., Lim, D.S.W., Shelby, J.P. and Chiu, D.T. (2010) Deformability Considerations in Filtration of Biological Cells. Lab on a Chip, 10, 837-842.
http://dx.doi.org/10.1039/b922301k

[55]   Altomare, L., Borgatti, M., Medoro, G., Manaresi, N., Tartagni, M., Guerrieri, R. and Gambari, R. (2003) Levitation and Movement of Human Tumor Cells Using a Printed Circuit Board Device Based on Software-Controlled Dielectrophoresis. Biotechnology and Bioengineering, 82, 474-479.
http://dx.doi.org/10.1002/bit.10590

[56]   Das, C.M., Becker, F., Vernon, S., Noshari, J., Joyce, C. and Gascoyne, P.R.C. (2005) Dielectrophoretic Segregation of Different Human Cell Types on Microscope Slides. Analytical Chemistry, 77, 2708-2719.
http://dx.doi.org/10.1021/ac048196z

[57]   Hu, X.Y., Bessette, P.H., Qian, J.R., Meinhart, C.D., Daugherty, P.S. and Soh, H.T. (2005) Marker-Specific Sorting of Rare Cells Using Dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America, 102, 15757-15761.
http://dx.doi.org/10.1073/pnas.0507719102

[58]   Park, J., Kim, B., Choi, S.K., Hong, S., Lee, S.H. and Lee, K.I. (2005) An Efficient Cell Separation System Using 3D-Asymmetric Microelectrodes. Lab on a Chip, 5, 1264-1270.
http://dx.doi.org/10.1039/b506803g

[59]   Kim, U., Shu, C.W., Dane, K.Y., Daugherty, P.S., Wang, J.Y.J. and Soh, H.T. (2007) Selection of Mammalian Cells Based on Their Cell-Cycle Phase Using Dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America, 104, 20708-20712.
http://dx.doi.org/10.1073/pnas.0708760104

[60]   Cristofanilli, M., Krishnamurthy, S., Das, C.M., Reuben, J.M., Spohn, W., Noshari, J., Becker, F. and Gascoyne, P.R. (2008) Dielectric Cell Separation of Fine Needle Aspirates from Tumor Xenografts. Journal of Separation Science, 31, 3732-3739.
http://dx.doi.org/10.1002/jssc.200800366

[61]   Kang, Y.J., Li, D.Q., Kalams, S.A. and Eid, J.E. (2008) DC-Dielectrophoretic Separation of Biological Cells by Size. Biomedical Microdevices, 10, 243-249.
http://dx.doi.org/10.1007/s10544-007-9130-y

[62]   An, J., Lee, J., Lee, S.H., Park, J. and Kim, B. (2009) Separation of Malignant Human Breast Cancer Epithelial Cells from Healthy Epithelial Cells Using an Advanced Dielectrophoresis-Activated Cell Sorter (DACS). Analytical and Bioanalytical Chemistry, 394, 801-809.
http://dx.doi.org/10.1007/s00216-009-2743-7

[63]   Gascoyne, P.R.C., Noshari, J., Anderson, T.J. and Becker, F.F. (2009) Isolation of Rare Cells from Cell Mixtures by Dielectrophoresis. Electrophoresis, 30, 1388-1398.
http://dx.doi.org/10.1002/elps.200800373

[64]   Kostner, S., van den Driesche, S., Witarski, W., Pastorekova, S. and Vellekoop, M.J. (2010) Guided Dielectrophoresis: A Robust Method for Continuous Particle and Cell Separation. IEEE Sensors Journal, 10, 1440-1446.
http://dx.doi.org/10.1109/JSEN.2010.2044787

[65]   Sabuncu, A.C., Liu, J.A., Beebe, S.J. and Beskok, A. (2010) Dielectrophoretic Separation of Mouse Melanoma Clones. Biomicrofluidics, 4, Article ID: 021101.
http://dx.doi.org/10.1063/1.3447702

[66]   Yang, F., Yang, X.M., Jiang, H., Bulkhaults, P., Wood, P., Hrushesky, W. and Wang, G.R. (2010) Dielectrophoretic Separation of Colorectal Cancer Cells. Biomicrofluidics, 4, Article ID: 013204.
http://dx.doi.org/10.1063/1.3279786

[67]   Alazzam, A., Stiharu, I., Bhat, R. and Meguerditchian, A.N. (2011) Interdigitated Comb-Like Electrodes for Continuous Separation of Malignant Cells from Blood Using Dielectrophoresis. Electrophoresis, 32, 1327-1336.
http://dx.doi.org/10.1002/elps.201000625

[68]   Han, K.H., Han, A. and Frazier, A.B. (2006) Microsystems for Isolation and Electrophysiological Analysis of Breast Cancer Cells from Blood. Biosensors and Bioelectronics, 21, 1907-1914.
http://dx.doi.org/10.1016/j.bios.2006.01.024

[69]   Cho, Y., Kim, H.S., Frazier, A.B., Chen, Z.G., Shin, D.M. and Han, A. (2009) Whole-Cell Impedance Analysis for Highly and Poorly Metastatic Cancer Cells. Journal of Microelectromechanical Systems, 18, 808-817.
http://dx.doi.org/10.1109/JMEMS.2009.2021821

[70]   Mamouni, J. and Yang, L. (2011) Interdigitated Microelectrode-Based Microchip for Electrical Impedance Spectroscopic Study of Oral Cancer Cells. Biomedical Microdevices, 13, 1075-1088.
http://dx.doi.org/10.1007/s10544-011-9577-8

[71]   Yang, L.J., Arias, L.R., Lane, T.S., Yancey, M.D. and Mamouni, J. (2011) Real-Time Electrical Impedance-Based Measurement to Distinguish Oral Cancer Cells and Non-Cancer Oral Epithelial Cells. Analytical and Bioanalytical Chemistry, 399, 1823-1833.
http://dx.doi.org/10.1007/s00216-010-4584-9

[72]   Xu, Y.H., Yang, X.R. and Wang, E.K. (2010) Review: Aptamers in Microfluidic Chips. Analytica Chimica Acta, 683, 12-20.
http://dx.doi.org/10.1016/j.aca.2010.10.007

[73]   Voldman, J. (2006) Electrical Forces for Microscale Cell Manipulation. Annual Review of Biomedical Engineering, 8, 425-454.
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739

[74]   Tay, F.E.H., Yu, L.M. and Iliescu, C. (2009) Particle Manipulation by Miniaturised Dielectrophoretic Devices. Defence Science Journal, 59, 595-604.
http://dx.doi.org/10.14429/dsj.59.1564

[75]   Zhang, C., Khoshmanesh, K., Mitchell, A. and Kalantarzadeh, K. (2010) Dielectrophoresis for Manipulation of Micro/ Nano Particles in Microfluidic Systems. Analytical and Bioanalytical Chemistry, 396, 401-420.
http://dx.doi.org/10.1007/s00216-009-2922-6

[76]   Khoshmanesh, K., Nahavandi, S., Baratchi, S., Mitchell, A. and Kalantarzadeh, K. (2011) Dielectrophoretic Platforms for Bio-Microfluidic Systems. Biosensors and Bioelectronics, 26, 1800-1814.
http://dx.doi.org/10.1016/j.bios.2010.09.022

[77]   Kim, D.H., Wong, P.K., Park, J., Levchenko, A. and Sun, Y. (2009) Microengineered Platforms for Cell Mechanobiology. Annual Review of Biomedical Engineering, 11, 203-233.
http://dx.doi.org/10.1146/annurev-bioeng-061008-124915

[78]   Loh, O., Vaziri, A. and Espinosa, H. (2009) The Potential of MEMS for Advancing Experiments and Modeling in Cell Mechanics. Experimental Mechanics, 49, 105-124.
http://dx.doi.org/10.1007/s11340-007-9099-8

[79]   Vanapalli, S.A., Duits, M.H.G. and Mugele, F. (2009) Microfluidics as a Functional Tool for Cell Mechanics. Biomicrofluidics, 3, Article ID: 012006.
http://dx.doi.org/10.1063/1.3067820

[80]   Rajagopalan, J. and Saif, M.T.A. (2011) MEMS Sensors Andmicrosystems for Cell Mechanobiology. Journal of Micromechanics and Microengineering, 21, Article ID: 054002.

[81]   Zheng, X.Y.R. and Zhang, X. (2011) Microsystems for Cellular Force Measurement: A Review. Journal of Micromechanics and Microengineering, 21, Article ID: 054003.

[82]   Zheng, Y. and Sun, Y. (2011) Microfluidic Devices for Mechanical Characterisation of Single Cells in Suspension. Micro & Nano Letters, 6, 327-331.
http://dx.doi.org/10.1049/mnl.2011.0010

[83]   Morgan, H., Sun, T., Holmes, D., Gawad, S. and Green, N.G. (2007) Single Cell Dielectric Spectroscopy. Journal of Physics D: Applied Physics, 40, 61-70.

[84]   Valero, A., Braschler, T. and Renaud, P. (2010) A Unified Approach to Dielectric Single Cell Analysis: Impedance and Dielectrophoretic Force Spectroscopy. Lab on a Chip, 10, 2216-2225.
http://dx.doi.org/10.1039/c003982a

[85]   Cheung, K.C., Di Berardino, M., Schade-Kampmann, G., Hebeisen, M., Pierzchalski, A., Bocsi, J., Mittag, A. and Tárnok, A. (2010) Microfluidic Impedance-Based Flow Cytometry. Cytometry Part A, 77A, 648-666.
http://dx.doi.org/10.1002/cyto.a.20910

[86]   Cheung, L.S.L., Zheng, X.G., Stopa, A., Baygents, J.C., Guzman, R., Schroeder, J.A., Heimark, R.L. and Zohar, Y. (2009) Detachment of Captured Cancer Cells under Flow Acceleration in a Bio-Functionalized Microchannel. Lab on a Chip, 9, 1721-1731.
http://dx.doi.org/10.1039/b822172c

[87]   Wang, S.T., Wang, H., Jiao, J., Chen, K.J., Owens, G.E., Kamei, K.I., Sun, J., Sherman, D.J., Behrenbruch, C.P., Wu, H. and Tseng, H.R. (2009) Angewandte Chemie, 121, 9132; (2009) Angewandte Chemie International Edition in English, 48, 8970.

[88]   Squires, T.M. and Quake, S.R. (2005) Microfluidics: Fluid Physics at the Nanoliter Scale. Reviews of Modern Physics, 77, 977.
http://dx.doi.org/10.1103/RevModPhys.77.977

[89]   Whitesides, G.M. (2006) The Origins and the Future of Microfluidics. Nature, 442, 368-373.
http://dx.doi.org/10.1038/nature05058

[90]   Hoshino, K., Huang, Y.Y., Lane, N., Huebschman, M., Uhr, J.W., Frenkel, E.P. and Zhang, X. (2011) Microchip-Based Immunomagnetic Detection of Circulating Tumor Cells. Lab on a Chip, 11, 3449-3457.
http://dx.doi.org/10.1039/c1lc20270g

[91]   Mauk, M.G., Ziober, B.L., Chen, Z.Y., Thompson, J.A. and Bau, H.H. (2007) Lab-on-a-Chip Technologies for Oral-Based Cancer Screening and Diagnostics—Capabilities, Issues, and Prospects. Annals of the New York Academy of Sciences, 1098, 467-475.
http://dx.doi.org/10.1196/annals.1384.025

[92]   Estes, M.D., Ouyang, B., Ho, S.M. and Ahn, C.H. (2009) Isolation of Prostate Cancer Cell Subpopulations of Functional Interest by Use of an On-Chip Magnetic Bead-Based Cell Separator. Journal of Micromechanics and Microengineering, 19, Article ID: 095015.

[93]   Lee, H., Yoon, T.J., Figueiredo, J.L., Swirski, F.K. and Weissleder, R. (2009) Rapid Detection and Profiling of Cancer Cells in Fine-Needle Aspirates. Proceedings of the National Academy of Sciences of the United States of America, 106, 12459-12464.
http://dx.doi.org/10.1073/pnas.0902365106

[94]   Chen, C.L., Chen, K.C., Pan, Y.C., Lee, T.P., Hsiung, L.C., Lin, C.M., Chen, C.Y., Lin, C.H., Chiang, B.L. and Wo, A. M. (2011) Separation and Detection of Rare Cells in a Microfluidic Disk via Negative Selection. Lab on a Chip, 11, 474-483.
http://dx.doi.org/10.1039/c0lc00332h

 
 
Top