AiM  Vol.4 No.14 , October 2014
Exopolysaccharides Produced from Lactobacillus delbrueckii subsp. bulgaricus
Author(s) Junko Nishimura
ABSTRACT

Lactobacillus delbrueckii subsp. bulgaricus, which has been widely used as a fermented milk starter, is a type of probiotic, and certain strains are able to produce exopolysaccharide (EPS). EPS produced from L. bulgaricus contributes to the physical and biological function of dairy products by regulating immune response, and this tendency seems to place EPS with acidic groups. To date, six types of chemical structure have been determined and are basically composed from glucose (Glc), galactose (Gal), and rhamnose (Rha). Eps clusters on chromosome DNA control the EPS synthesis and are transcribed as one mRNA 14 genes with 18kb on L. bulgaricus Lfi5. Furthermore, L. bulgaricus is able to utilize lactose (Lac) as carbohydrate source, repeating units of EPS are synthesized from Glc 6-phosphate, generated by an Embden-Meyerhof (EM) pathway in cellular carbohydrate assimilation. This review discusses EPS produced from L. bulgaricus.


Cite this paper
Nishimura, J. (2014) Exopolysaccharides Produced from Lactobacillus delbrueckii subsp. bulgaricus. Advances in Microbiology, 4, 1017-1023. doi: 10.4236/aim.2014.414112.
References
[1]   Monchois, V., Willemot, R.M. and Monsan, P. (1999) Glucansucrases: Mechanism of Action and Structure-Function Relationships. FEMS Microbiology Reviews, 23, 131-151.
http://dx.doi.org/10.1111/j.1574-6976.1999.tb00394.x

[2]   De Vuyst, L. and Degeest, B. (1999) Heteropolysaccharides from Lactic Acid Bacteria. FEMS Microbiology Reviews, 23, 153-177. http://dx.doi.org/10.1111/j.1574-6976.1999.tb00395.x

[3]   Cerning, J. (1990) Exocellular Polysaccharides Produced by Lactic Acid Bacteria. FEMS Microbiology Letters, 87, 113-130. http://dx.doi.org/10.1016/0378-1097(90)90701-Q

[4]   Mozzi, F., Vaningelgem, F., Hébert, E.M., Van der Meulen, R., Foulquié Moreno, M.R., Font de Valdez, G. and De Vuyst, L. (2006) Diversity of Heteropolysaccharide-Producing Lactic Acid Bacterium Strains and Their Biopolymers. Applied and Environmental Microbiology, 72, 4431-4435.
http://dx.doi.org/10.1128/AEM.02780-05

[5]   Pescuma, M., Hébert, E.M., Dalgalarrondo, M., Haertlé, T., Mozzi, F., Chobert, J.M. and Font de Valdez, G. (2009) Effect of Exopolysaccharides on the Hydrolysis of Beta-Lactoglobulin by Lactobacillus acidophilus CRL 636 in an in Vitro Gastric/Pancreatic System. Journal of Agricultural and Food Chemistry, 57, 5571-5577. http://dx.doi.org/10.1021/jf9006505

[6]   Górska-Fraczek, S., Sandstrom, C., Kenne, L., Pasciak, M., Brzozowska, E., Strus, M., Heczko, P. and Gamian, A. (2013) The Structure and Immunoreactivity of Exopolysaccharide Isolated from Lactobacillus johnsonii Strain 151. Carbohydrate Research, 378, 148-153.
http://dx.doi.org/10.1016/j.carres.2013.05.012

[7]   Kitazawa, H., Yamaguchi, T., Miura, M., Saito, T. and Itoh, T. (1993) B-Cell Mitogen Produced by Slime-Forming, Encapsulated Lactococcus lactis ssp. cremoris Isolated from Ropy Sour Milk, Viili. Journal of Dairy Science, 76, 1514-1519. http://dx.doi.org/10.3168/jds.S0022-0302(93)77483-4

[8]   Kitazawa, H., Itoh, T., Tomioka, Y., Mizugaki, M. and Yamaguchi, T. (1996) Induction of IFN-Gamma and IL-1 Alpha Production in Macrophages Stimulated with Phosphopolysaccharide Produced by Lactococcus lactis ssp. cremoris. International Journal of Food Microbiology, 31, 99-106.
http://dx.doi.org/10.1016/0168-1605(96)00968-3

[9]   Kitazawa, H., Yamaguchi, T., Miura, M., Saito, T. and Itoh, T. (1993) B-Cell Mitogen Produced by Slime-Forming, Encapsulated Lactococcus lactis ssp. cremoris Isolated from Ropy Sour Milk, Viili. Journal of Dairy Science, 76, 1514-1519. http://dx.doi.org/10.3168/jds.S0022-0302(93)77483-4

[10]   Pigeon, R.M., Cuesta, E.P. and Gililliand, S.E. (2002) Binding of Free Bile Acids by Cells of Yogurt Starter Culture Bacteria. Journal of Dairy Science, 85, 2705-2710.
http://dx.doi.org/10.3168/jds.S0022-0302(02)74357-9

[11]   Tok, E. and Aslim, B. (2010) Cholesterol Removal by Some Lactic Acid Bacteria That Can Be Used as Probiotic. Microbiology and Immunology, 54, 257-264.
http://dx.doi.org/10.1111/j.1348-0421.2010.00219.x

[12]   Ebina, T., Ogawa, N. and Murata, K. (1995) Antitumour Effect of Lactobacillus bulgaricus 878R. Biotherapy, 9, 65-70.

[13]   Uemura(Nishimura), J., Itoh, T., Kaneko, T. and Oda, K. (1998) Chemical Characterization of Exocellular Polysaccharide from Lactobacillus delbrueckii subsp. bulgaricus OLL 1073R-1. Milchwissen-
schaft, 53, 443-446.

[14]   Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T. and Itoh, T. (1998) Phosphate Group Requirement for Mitogenic Activation of Lymphocytes by an Extracellular Phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. International Journal of Food Microbiology, 40, 169-175. http://dx.doi.org/10.1016/S0168-1605(98)00030-0

[15]   Kitazawa, H., Ishii, Y., Uemura, J., Kawai, Y., Saito, T., Kaneko, T., Noda, K. and Itoh, T. (2000) Augmentation of Macrophage Functions by an Extracellular Phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiology, 17, 109-118.
http://dx.doi.org/10.1006/fmic.1999.0294

[16]   Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., Saito, T. and Oda, M. (2006) Immunomodulatory Effects of Polysaccharides Produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 89, 2873-2881. http://dx.doi.org/10.3168/jds.S0022-0302(06)72560-7

[17]   Makino, S., Ikegami, S., Kume, A., Horiuchi, H., Sasaki, H. and Orii, N. (2010) Reducing the Risk of Infection in the Elderly by Dietary Intake of Yoghurt Fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. British Journal of Nutrition, 104, 998-1006.
http://dx.doi.org/10.1017/S000711451000173X

[18]   Nagai, T., Makino, S., Ikegami, S., Itoh, H. and Yamada, H. (2011) Effects of Oral Administration of Yogurt Fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and Its Exopolysaccharides against Influenza Virus Infection in Mice. International Immunopharmacology, 11, 2246-2250. http://dx.doi.org/10.1016/j.intimp.2011.09.012

[19]   Sánchez-Medina, I., Frank, M., von der Lieth, C.W. and Kamerling, J.P. (2009) Conformational Analysis of the Neutral Exopolysaccharide Produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B26. Organic and Biomolecular Chemistry, 7, 280-287. http://dx.doi.org/10.1039/b810468a

[20]   Sánchez-Medina, I., Gerwig, G.J., Urshev, Z.L. and Kamerling, J.P. (2007) Structure of a Neutral Exopolysaccharide Produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B26. Carbohydrate Research, 342, 2430-2439. http://dx.doi.org/10.1016/j.carres.2007.06.014

[21]   Sánchez-Medina, I., Gerwig, G.J., Urshev, Z.L. and Kamerling, J.P. (2007) Structural Determination of a Neutral Exopolysaccharide Produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B332. Carbohydrate Research, 342, 2735-2744. http://dx.doi.org/10.1016/j.carres.2007.09.005

[22]   Harding, L.P., Marshall, V.M., Hernandez, Y., Gu, Y., Maqsood, M., McLay, N. and Laws, A.P. (2005) Structural Characterization of a Highly Branched Exopolysaccharide Produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB2074. Carbohydrate Research, 340, 1107-1111.
http://dx.doi.org/10.1016/j.carres.2005.01.038

[23]   Harding, L.P., Marshall, V.M., Elvin, M., Gu, Y. and Laws, A.P. (2003) Structural Characterisation of a Perdeuteriomethylated Exopolysaccharide by NMR Spectroscopy: Characterisation of the Novel Exopolysaccharide Produced by Lactobacillus delbrueckii subsp. bulgaricus EU23. Carbohydrate Research, 338, 61-67. http://dx.doi.org/10.1016/S0008-6215(02)00354-3

[24]   Gruter, M., Leeflang, B.R., Kuiper, J., Kamerling, J.P. and Vliegenthart, J.F. (1993) Structural Characterization of the Exopolysaccharide Produced by Lactobacillus delbrückii Subspecies bulgaricus rr Grown in Skimmed Milk. Carbohydrate Research, 239, 209-226. http://dx.doi.org/10.1016/0008-6215(93)84216-s

[25]   Faber, E.J., Kamerling, J.P. and Vliegenthart, J.F. (2001) Structure of the Extracellular Polysaccharide Produced by Lactobacillus delbrueckii subsp. bulgaricus 291. Carbohydrate Research, 331, 183-194. http://dx.doi.org/10.1016/S0008-6215(01)00012-X

[26]   Manca de Nadra, M.C., Strasser de Saad, A.M., Pesce de Ruiz Holgado, A.A. and Oliver, G. (1985) Extracellular Polysaccharide Production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft, 40, 409-411.

[27]   Cerning, J., Bouillanne, C., Desmazeaud, M.J. and Landon, M. (1986) Isolation and Characterization of Exocellular Polysaccharide Produced by Lactobacillus bulgaricus. Biotechnology Letters, 8, 625-628. http://dx.doi.org/10.1007/BF01025968

[28]   Garcia-Garibay, M. and Marshall, V.M.E. (1991) Polymer Production by Lactobacillus delbrueckii ssp. bulgaricus. Journal of Applied Bacteriology, 70, 325-328.
http://dx.doi.org/10.1111/j.1365-2672.1991.tb02943.x

[29]   Goh, K.K., Haisman, D.R. and Singh, H. (2005) Development of an Improved Procedure for Isolation and Purification of Exopolysaccharides Produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483. Applied Microbiology and Biotechnology, 67, 202-208. http://dx.doi.org/10.1007/s00253-004-1739-7

[30]   Grobben, G.J., Chin-Joe, I., Kitzen, V.A., Boels, I.C., Boer, F., Sikkema, J., Smith, M.R. and de Bont, J.A. (1998) Enhancement of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a Simplified Defined Medium. Applied and Environmental Microbiology, 64, 1333-1337.

[31]   Petry, S., Furlan, S., Crepeau, M.J., Cerning, J. and Desmazeaud, M. (2000) Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium. Applied and Environmental Microbiology, 66, 3427-3431.
http://dx.doi.org/10.1128/AEM.66.8.3427-3431.2000

[32]   Nishimura-Uemura, J., Kitazawa, H., Kawai, Y., Itoh, T., Oda, M. and Saito, T. (2003) Functional Alteration of Murine Macrophages Stimulated with Extracellular Polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL 1073R-1. Food Microbiology, 20, 267-273.
http://dx.doi.org/10.1016/S0740-0020(02)00177-6

[33]   Liu, M., Siezen, R.J. and Nauta, A. (2009) In Silico Prediction of Horizontal Gene Transfer Events in Lactobacillus bulgaricus and Streptococcus thermophilus Reveals Protocooperation in Yogurt Manufacturing. Applied and Environmental Microbiology, 75, 4120-4129.
http://dx.doi.org/10.1128/AEM.02898-08

[34]   Lamothe, G.T., Jolly, L., Mollet, B. and Stingele, F. (2002) Genetic and Biochemical Characterization of Exopolysaccharide Biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Archives of Microbiology, 178, 218-228. http://dx.doi.org/10.1007/s00203-002-0447-x

[35]   van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., Robert, C., Oztas, S., Mangenot, S., Couloux, A., Loux, V., Dervyn, R., Bossy, R., Bolotin, A., Batto, J.M., Walunas, T., Gibrat, J.F., Bessières, P., Weissenbach, J., Ehrlich, S.D. and Maguin, E. (2006) The Complete Genome Sequence of Lactobacillus bulgaricus Reveals Extensive and Ongoing Reductive Evolution. Proceedings of the National Academy of Sciences of the United States of America, 103, 9274-9279. http://dx.doi.org/10.1073/pnas.0603024103

[36]   Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D.M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J.H., Díaz-Muniz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O’Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B. and Mills, D. (2006) Comparative Genomics of the Lactic Acid Bacteria. Proceedings of the National Academy of Sciences of the United States of America, 103, 15611-15616.
http://dx.doi.org/10.1073/pnas.0607117103

[37]   Sun, Z., Chen, X., Wang, J., Zhao, W., Shao, Y., Guo, Z., Zhang, X., Zhou, Z., Sun, T., Wang, L., Meng, H., Zhang, H. and Chen, W. (2011) Complete Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus Strain ND02. Journal of Bacteriology, 193, 3426-3427. http://dx.doi.org/10.1128/JB.05004-11

[38]   Groot, M.N.N. and Kleerebezem, M. (2007) Mutational Analysis of the Lactococcus lactis NIZO B40 Exopolysaccharide (EPS) Gene Cluster: EPS Biosynthesis Correlates with Unphosphorylated EpsB. Journal of Applied Microbiology, 103, 2645-2656.
http://dx.doi.org/10.1111/j.1365-2672.2007.03516.x

[39]   Welman, A.D. and Maddox, I.S. (2003) Fermentation Performance of an Exopolysaccharide-Producing Strain of Lactobacillus delbrueckii subsp. bulgaricus. Journal of Industrial Microbiology and Biotechnology, 30, 661-668. http://dx.doi.org/10.1007/s10295-003-0095-4

[40]   Welman, A.D., Maddox, I.S. and Archer, R.H. (2006) Metabolism Associated with Raised Metabolic Flux to Sugar Nucleotide Precursors of Exopolysaccharides in Lactobacillus delbrueckii subsp. bulgaricus. Journal of Industrial Microbiology and Biotechnology, 33, 391-400. http://dx.doi.org/10.1007/s10295-005-0075-y

[41]   Sieuwerts, S., de Bok, F.A., Hugenholtz, J. and Vlieg, J.E.H. (2008) Unraveling Microbial Interactions in Food Fermentations: From Classical to Genomics Approaches. Applied and Environmental Microbiology, 74, 4997-5007. http://dx.doi.org/10.1128/AEM.00113-08

[42]   Sieuwerts, S., Molenaar, D., van Hijum, S.A., Beerthuyzen, M., Stevens, M.J., Janssen, P.W., Ingham, C.J., de Bok, F.A., de Vos, W.M. and Vlieg, J.E.H. (2010) Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Applied and Environmental Microbiology, 76, 7775-7784.
http://dx.doi.org/10.1128/AEM.01122-10

[43]   Nishimura, J., Kawai, Y., Aritomo, R., Ito, Y., Makino, S., Ikegami, S., Isogai, E. and Saito, T. (2013) Effect of Formic Acid on Exopolysaccharide Production in Skim Milk Fermentation by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Bioscience of Microbiota, Food and Health, 32, 23-32.

[44]   Salazar, N., Prieto, A., Leal, J.A., Mayo, B., Bada-Gancedo, J.C., Reyes-Gavilán, C.G. and Ruas-Madiedo, P. (2009) Production of Exopolysaccharides by Lactobacillus and Bifidobacterium Strains of Human Origin, and Metabolic Activity of the Producing Bacteria in Milk. Journal of Dairy Science, 92, 4158-4168. http://dx.doi.org/10.3168/jds.2009-2126

[45]   Patten, D.A., Leivers, S., Chadha, M.J., Maqsood, M., Humphreys, P.N., Laws, A.P. and Collett, A. (2014) The Structure and Immunomodulatory Activity on Intestinal Epithelial Cells of the EPSs Isolated from Lactobacillus helveticus sp. Rosyjski and Lactobacillus acidophilus sp. 5e2. Carbohydrate Research, 384, 119-127. http://dx.doi.org/10.1016/j.carres.2013.12.008

 
 
Top