AMPC  Vol.4 No.10 , October 2014
Effect of Chemical Extraction on Physicochemical and Mechanical Properties of Doum Palm Fibres
ABSTRACT
The aim of this study is to investigate the effect of chemical extraction method on the properties of doum palm fibres. The method of extraction which is carried out is a soda treatment. First, an investigation of the extraction processes was undertaken. Secondly, the physical properties (surface morphology, density, linear density and diameter), the mechanical properties (tenacity, strain) and chemical properties (FT-IR spectra) of doum palm fibres were inspected. Finally, a comparison between properties of doum palm fibres and other vegetal ones has been included. Results indicates an influence of soda treatment on properties of Doum palm fibers. In fact, there is an improvement on fibers diameter and linear density while increasing soda concentration, temperature and treatment duration. Moreover, the studied fibers have a low density which does not exceed 1. The fibers tenacity achieved the maximum value of 20.86 cN/Tex when precessing in the following combination (0.75 N, 100°C and 180 mn). In the end, the FTIR spectra reveals a change in structure after this alkali treatment while increasing the cellulose amount exposed on the fiber surface and consequently the number of possible reaction sites (OH groups).

Cite this paper
Zannen, S. , Ghali, L. , Halimi, M. and Hssen, M. (2014) Effect of Chemical Extraction on Physicochemical and Mechanical Properties of Doum Palm Fibres. Advances in Materials Physics and Chemistry, 4, 203-216. doi: 10.4236/ampc.2014.410024.
References
[1]   Srinivasa, C.V., Arifulla, A., Goutham, N., et al. (2010) Static Bending and Impact Behaviour of Areca Fibers Composites. Materials and Design, 32, 2469-2475.

[2]   Rao, K.M.M. and Rao, K.M. (2007) Extraction and Tensile Properties of Natural Fibers: Vakka, Date and Bamboo. Composite Structures, 77, 288-295.
http://dx.doi.org/10.1016/j.compstruct.2005.07.023

[3]   Bledzki, A.K. and Gassan. J. (1999) Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24, 221-274.
http://dx.doi.org/10.1016/S0079-6700(98)00018-5

[4]   Zbidi, F., Sghaier, S., Nejma, M.B. and Zidi, M. (2009) Influence of Alkaline and Enzymatic Treatments on the Properties of Doum Palm Fibers and Composites. Journal of Applied Sciences, 9, 366-371.
http://dx.doi.org/10.3923/jas.2009.366.371

[5]   Garkhail, S.K., Heijenrath, R.W.H. and Peijs, T. (2000) Mechanical Properties of Natural Fibre Reinforced Thermoplastics Based on Flax Fibres and Polypropylene. Applied Composite Materials, 7, 351.
http://dx.doi.org/10.1023/A:1026590124038

[6]   Annamalai, P.K., Singh, R.P. and Sarwade, B.D. (2005) Durability of Composites Prepared from Ethylene-Propylene Copolymer and Jute Fiber under Accelerated Aging and Biotic Environment. Materials Chemistry and Physics, 92, 458-469.
http://dx.doi.org/10.1016/j.matchemphys.2005.01.027

[7]   Aziz, S.H. and Ansel, M.P. (2004) The Effect of Alkalization and Fiber Alignment on the Mechanical and Thermal Properties of Kenaf and Hemp Bast Fiber Composites. Composites Science and Technology, 64, 1219-1230.
http://dx.doi.org/10.1016/j.compscitech.2003.10.001

[8]   Haque, M., Haque, M., Islam, S. and Alic, E. (2009) Physico-Mechanical Properties of Chemically Treated Palm and Coir Fiber Reinforced Polypropylene Composites. Bioresource Technology, 100, 4903-4906.
http://dx.doi.org/10.1016/j.biortech.2009.04.072

[9]   Romain, T. (2008) Anatomie des palmiers (Arecaceae Bercht. & J. Presl) et identification: Application à l’archéobotanique, Master de Systématique Evolution Paléontologie, université Pierre et Marie CURIE.

[10]   NF, G., 07-007 (1983) Fibers Tests-Determination of Fibers Linear Density. AFNOR, Paris, 272.

[11]   Al-Khanbashi, A., Al-Kaabi, K. and Hammami, A. (2005) Date Palm Fibres as Polymeric Matrix Reinforcement: Fibre Characterisation. Polymer Composites, 26, 486-497.
http://dx.doi.org/10.1002/pc.20118

[12]   Joseph, K., Tolêdo Filho, R.D., James, B., Thomas, S. and de Carvalho, L.H. (1999) A Review on Sisal Fibre Reinforced Polymer Composites. Revista Brasileira de Engenharia Agricola e Ambiontal, 3, 367-379.

[13]   Alawar, A., Hamed, A.M. and Al-Kaabi, K. (2009) Characterization of Treated Date Palm Tree Fiber as Composite Reinforcement. Composites Part B: Engineering, 40, 601-606.
http://dx.doi.org/10.1016/j.compositesb.2009.04.018

[14]   Sghaier, S., Zbidi, F. and Zidi, M. (2009) Characterization of Doum Palm Fibres, after Chemical Modification. Textile Research Journal, 79, 1108-1114.
http://dx.doi.org/10.1177/0040517508101623

[15]   Ghali, L., Zidi, M. and Roudesli, S. (2006) Physical and Mechanical Characterization of Technical Esparto (Alfa) Fibers. Journal of Applied Science, 6, 2450-2455.

[16]   Msahli, S. (2002) Etude du potentiel textile des fibres d’agave Americana L. Thèse présentée à l’université de Haute Alsace.

[17]   Mwaikambo, L.Y. and Ansell, M.P. (2002) Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization. Journal of Applied Polymer Science, 84, 2222-2234.
http://dx.doi.org/10.1002/app.10460

[18]   Hashim, M.Y., Roslan, M.N., Amin, A.M., Zaidi, A.M.A. and Ariffin, S. (2012) Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review. World Academy of Science, Engineering and Technology, 6, 1382-1388.

[19]   Sreenivasan, S., Bhama Iyer, P. and Krishna Iyer, K.R. (1996) Influence of Delignification and Alkali Treatment on the Fine Structure of Coir Fibres (Cocos Nucifera). Journal of Materials Science, 31, 721-726.
http://dx.doi.org/10.1007/BF00367891

[20]   Li, X., Tabil, L.G. and Panigrahi, S. (2007) Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 15, 25-33.
http://dx.doi.org/10.1007/s10924-006-0042-3

[21]   Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R. and Herrera-Franco, P.J. (1999) Effect of Fiber Surface Treatment on the Fiber-Matrix Bond Strength of Natural Fiber Reinforced Composites. Composites Part B: Engineering, 30, 309-320.
http://dx.doi.org/10.1016/S1359-8368(98)00054-7

[22]   Sana, R., Mounir, J. and Slah, M. (2014) Study of Structure and Properties of Tunisian Typha Leaf Fibers. International Journal of Engineering Research & Technology (IJERT), 3.

[23]   Jaouadi, M., M’sahli, S. and Sakli, F. (2009) Optimization and Characterization of Pulp Extracted from the Agave Americana L. Fibers. Textile Research Journal, 79, 110-120.

[24]   Nelson, M.L. and O’Connor, R.T. (1964) Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Cellulose I and II. Journal of Applied Polymer Science, 8, 1325-1341.
http://dx.doi.org/10.1002/app.1964.070080323

[25]   Adebajo, M.O. and Frost, R.L. (2004) Infrared and 13C MAS Nuclear Magnetic Resonance Spectroscopic Study of Acetylation of Cotton. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 60, 449-453.

[26]   de Andrade Silva, F., Chawla, N. and de Toledo Filho, R.D. (2008) Tensile Behavior of High Performance Natural (Sisal) Fibers. Composites Science and Technology, 68, 3438-3443.

[27]   De Rosa, I.M., Kenny, J.M., Puglia, D., Santulli, C. and Sarasini, F. (2010) Morphological, Thermal and Mechanical Characterization of Okra (Abelmoschus esculentus) Fibres as Potential Reinforcement in Polymer Composites. Composites Science and Technology, 70, 116-122.
http://dx.doi.org/10.1016/j.compscitech.2009.09.013

[28]   Eva, R. (2010) Extraction et étude des propriétés physiques et mécaniques des fibres d"Alfa (Esparto grass) en vue d’applications textiles. Mastère présentée à Ecole Nationale Supérieure d’Ingénieurs Sud-Alsace (UHA).

[29]   Gomes, A., Goda, K. and Ohgi, J. (2004) Effects of Alkali Treatment to Reinforcement on Tensile Properties of Curaua Fiber Green Composites. JSME International Journal Series A Solid Mechanics and Material Engineering, 47, 541-546.
http://dx.doi.org/10.1299/jsmea.47.541

 
 
Top