AiM  Vol.4 No.14 , October 2014
The Use of Macroarray as a Simple Tool to Follow the Metabolic Profile of Lactobacillus plantarum during Fermentation
Abstract: This study focused on defining the differences in L. plantarum gene expression levels in different media and in different growth phases using an easy and cost-efficient monitoring of gene expression. A macroarray based on a group of selected L. plantarum genes, 178 genes belonging to 18 main groups, printed onto a nitrocellulose filter was designed in this work. Using the macrofilters designed, the expression of a selected set of L. plantarum genes was assayed in synthetic MRS medium and in extracted carrot juice. To compare the potential differences of starter gene expression in hygienic and contaminated cultivation media, the L. plantarum strain was cultivated in both sterile and contaminated (yeast and Escherichia coli) MRS and carrot juice. The number of genes found to be regulated as a function of growth was clearly higher in MRS-based growth medium than in carrot juice, In carrot juice, expression of the gene encoding malolactic enzyme (MLE), which makes L. plantarum an advantageous microbe in e.g. wine making, was found to be upregulated in logarithmic phase of growth. The current study demonstrated that macroarrays printed on nitrocellulose filters with simple robotic systems can be analyzed by standard laboratory equipment and methods usually available in molecular laboratories. Using this technology, rapid and cost-efficient analysis of genome function of L. plantarum can be carried out e.g. in developing regions, where lactic acid fermentation of food and feed matrices is a common practice.
Cite this paper: Kahala, M. , Ahola, V. , Mäkimattila, E. , Paulin, L. and Joutsjoki, V. (2014) The Use of Macroarray as a Simple Tool to Follow the Metabolic Profile of Lactobacillus plantarum during Fermentation. Advances in Microbiology, 4, 996-1016. doi: 10.4236/aim.2014.414111.

[1]   Rose, A. (1982) History and Scientific Basis of Microbial Activity in Fermented Foods. In: Rose, A., Ed., Fermented Foods, Academic Press, New York, 1-13.

[2]   Chevallier, B., Hubert, J.C. and Kammerer, B. (1994) Determination of Chromosome Size and Number of rrn Loci in Lactobacillus plantarum by Pulsed-Field Gel Electrophoresis. FEMS Microbiology Letters, 120, 51-56.

[3]   Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O.P., Leer, R., Tarchini, R., Peters, S.A., Sandbrink H.M., Fiers, M., Stiekema, W., Lankhorst, R., Bron, P., Hoffer, S., Groot, M., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W.M. and Siezen, R.J. (2003) Complete Genome Sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 100, 1990-1995.

[4]   McDonald, L.C., Fleming, H.P. and Hassan, H.M. (1990) Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Applied and Environmental Microbiology, 56, 2120-2124.

[5]   Maki, M. (2004) Lactic Acid Bacteria in Vegetable Fermentations. In: Salminen, S., von Wright, A. and Ouwehand, A., Eds., Lactic Acid Bacteria: Microbiological and Functional Aspects, 2nd Edition, Marcel Dekker, Inc., New York, 419-430.

[6]   Molenaar, D., Bringel, F., Schuren, F.H., De Vos, W.M., Siezen, R.J. and Kleerebezem, M. (2005) Exploring Lactobacillus plantarum Genome Diversity by Using Microarrays. Journal of Bacteriology, 187, 6119-6127.

[7]   Koistinen, K.M., Plumed-Ferrer, C., Lehesranta, S.J., Karenlampi, S.O. and von Wright, A. (2007) Comparison of Growth-Phase-Dependent Cytosolic Proteomes of Two Lactobacillus plantarum Strains Used in Food and Feed Fermentations. FEMS Microbiology Letters, 273, 12-21.

[8]   Plumed-Ferrer, C., Koistinen, K.M., Tolonen, T.L., Lehesranta, S.J., Karenlampi, S.O., Makimattila, E., Joutsjoki, V., Virtanen, V. and von Wright, A. (2008) Comparative Study of Sugar Fermentation and Protein Expression Patterns of Two Lactobacillus plantarum Strains Grown in Three Different Media. Applied and Environmental Microbiology, 74, 5349-5358.

[9]   Di Cagno, R., Surico, R.F., Siragusa, S., De Angelis, M., Paradiso, A., Minervini, F., De Gara, L. and Gobbetti, M. (2008) Selection and Use of Autochthonous Mixed Starter for Lactic Acid Fermentation of Carrots, French Beans or Marrows. International Journal of Food Microbiology, 127, 220-228.

[10]   Siragusa, S., De Angelis, M., Calasso, M., Campanella, D., Minervini, F., Di Cagno, R. and Gobbetti, M. (2013) Fermentation and Proteome Profiles of Lactobacillus plantarum Strains during Growth under Food-Like Conditions. Journal of Proteomics, 96, 366-380.

[11]   Stevens, M.J.A., Wiersma, A., de Vos, W.M., Kuipers, O.P., Smid, E.J., Molenaar, D. and Kleerebezem, M. (2008) Improvement of Lactobacillus plantarum Aerobic Growth as Directed by Comprehensive Transcriptome Analysis. Applied and Environmental Microbiology, 74, 4776-4778.

[12]   Wels, M., Overmars, L., Francke, C., Kleerebezem, M. and Siezen, R.J. (2011) Reconstruction of the Regulatory Network of Lactobacillus plantarum WCFS1 on Basis of Correlated Gene Expression and Conserved Regulatory Motifs. Microbial Biotechnology, 4, 333-344.

[13]   Bron, P.A., Wels, M., Bongers, R.S., de Veen, H., Wiersma, A., Overmars, L., Marco, M.L. and Kleerebezem, M. (2012) Transcriptomes Reveal Genetic Signatures Underlying Physiological Variations Imposed by Different Fermentation Conditions in Lactobacillus plantarum. PloS ONE, 7, e38720.

[14]   Reverón, I., Rivas, B., Munoz, R. and de Felipe, F.L. (2012) Genome-Wide Transcriptomic Responses of a Human Isolate of Lactobacillus plantarum Exposed to p-Coumaric Acid Stress. Molecular Nutrition & Food Research, 56, 1848-1859.

[15]   Todt, T.J., Wels, M., Bongers, R.S., Siezen, R.S., van Hijum, S.A.F.T. and Kleerebezem, M. (2012) Genome-Wide Prediction and Validation of Sigma70 Promoters in Lactobacillus plantarum WCFS1. PloS ONE, 7, e45097.

[16]   de Veen, H., Abee, T., Tempelaars, M., Bron, P.A., Kleerebezem, M. and Marco, M.L. (2011) Short- and Long-Term Adaptation to Ethanol Stress and Its Cross-Protective Consequences in Lactobacillus plantarum. Applied and Environmental Microbiology, 77, 5247-5256.

[17]   Wegkamp, A., Mars, A.E., Faijes, M., Molenaar, D., de Vos, R.C.H., Klaus, S.M.J., Hanson, A.D., de Vos, W.M. and Smid, E.J. (2010) Physiological Responses to Folate Overproduction in Lactobacillus plantarum WCFS1. Microbial Cell Factories, 9, 100.

[18]   Tamminen, M., Maki, M. and Joutsjoki, T. (2003) Differentiation of Lactobacilli Related to Lactobacillus plantarum from Naturally Fermented Cucumbers and White Cabbage. Applied Biotechnology, Food Science and Policy, 1, 125-128.

[19]   Tamminen, M., Joutsjoki, T., Sjoblom, M., Joutsen, M., Palva, A., Ryhanen, E.L. and Joutsjoki, V. (2004) Screening of Lactic Acid Bacteria from Fermented Vegetables by Carbohydrate Profiling and PCR-ELISA. Letters in Applied Microbiology, 39, 439-444.

[20]   Hames, B. and Higgins, S. (1985) Nucleic Acid Hybridization: A Practical Approach. IRL Press, Oxford.

[21]   Raulo, E., Chernousov, M.A., Carey, D.J., Nolo, R. and Rauvala, H. (1994) Isolation of a Neuronal Cell Surface Receptor of Heparin Binding Growth-Associated Molecule (HB-GAM). Identification as N-Syndecan (Syndecan-3). The Journal of Biological Chemistry, 269, 12999-13004.

[22]   Hultman, J., Pitkaranta, M., Romantschuk, M., Auvinen, P. and Paulin, L. (2008) Probe-Based Negative Selection for Underrepresented Phylotypes in Large Environmental Clone Libraries. Journal of Microbiological Methods, 75, 457-463.

[23]   Karlin, S. and Mrázek, J. (2000) Predicted Highly Expressed Genes of Diverse Prokaryotic Genomes. Journal of Bacteriology, 182, 5238-5250.

[24]   Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V. and Quackenbush, J. (2003) TM4: A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques, 34, 374-378.

[25]   Ishihama, A. (1997) Adaptation of Gene Expression in Stationary Phase Bacteria. Current Opinion in Genetics and Development, 7, 582-588.

[26]   Ishihama, A. (1999) Modulation of the Nucleoid, the Transcription Apparatus, and the Translation Machinery in Bacteria for Stationary Phase Survival. Genes to Cells, 4, 135-143.

[27]   Bergonzelli, G.E., Granato, D., Pridmore, R.D., Marvin-Guy, L.F., Donnicola, D. and Corthésy-Theulaz, I.E. (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) Is Cell Surface Associated: Potential Role in Interactions with the Host and the Gastric Pathogen Helicobacter pylori. Infection and Immunity, 74, 425-434.

[28]   Lamberti, C., Mangiapane, E., Pessione, A., Mazzoli, R., Giunta, C. and Pessione, E. (2011) Proteomic Characterization of a Selenium-Metabolizing Probiotic Lactobacillus reuteri Lb2 BM for Nutraceutical Applications. Proteomics, 11, 2212-2221.

[29]   Cohen, D.P.A., Renes, J., Bouwman, F.G., Zoetendal, E.G., Mariman, E., de Vos, W.M. and Vaughan, E.E. (2006) Proteomic Analysis of Log to Stationary Growth Phase Lactobacillus plantarum Cells and a 2-DE Database. Proteomics, 6, 6485-6493.

[30]   Johanningsmeier, S.D., Fleming, H.P. and Breidt Jr., F. (2004) Malolactic Activity of Lactic Acid Bacteria during Sauerkraut Fermentation. Journal of Food Science, 69, M222-M227.

[31]   Labarre, C., Guzzo, J., Cavin, J.F., Diviès, C., Labarre, C. and Guzzo, J. (1996) Cloning and Characterization of the Genes Encoding the Malolactic Enzyme and the Malate Permease of Leuconostoc oenos. Applied and Environmental Microbiology, 62, 1274-1282.

[32]   G-Alegria, E., López, I., Ruiz, J.I., Sáenz, J., Fernández, E., Zarazaga, M., Dizy, M., Torres, C. and Ruiz-Larrea, F. (2004) High Tolerance of Wild Lactobacillus plantarum and Oenococcus oeni Strains to Lyophilisation and Stress Environmental Conditions of Acid pH and Ethanol. FEMS Microbiology Letters, 230, 53-61.

[33]   Johanningsmeier, S.D. and McFeeters, R.F. (2013) Metabolism of Lactic Acid in Fermented Cucumbers by Lactobacillus buchneri and Related Species, Potential Spoilage Organisms in Reduced Salt Fermentations. Food Microbiology, 35, 129-135.

[34]   Fiocco, D., Crisetti, E., Capozzi, V. and Spano, G. (2007) Validation of an Internal Control Gene to Apply Reverse Transcription Quantitative PCR to Study Heat, Cold and Ethanol Stresses in Lactobacillus plantarum. World Journal of Microbiology and Biotechnology, 24, 899-902.

[35]   Kupradit, C., Rodtong, S. and Ketudat-Cairns, M. (2013) Development of a DNA Macroarray for Simultaneous Detection of Multiple Foodborne Pathogenic Bacteria in Fresh Chicken Meat. World Journal of Microbiology & Biotechnology, 29, 2281-2291.

[36]   Patterson, A.J., Colangeli, R., Spigaglia, P. and Scott, K.P. (2007) Distribution of Specific Tetracycline and Erythromycin Resistance Genes in Environmental Samples Assessed by Macroarray Detection. Environmental Microbiology, 9, 703-715.

[37]   Jenkins, B.D., Steward, G.F., Short, S.M., Ward, B.B. and Zehr, J.P. (2004) Fingerprinting Diazotroph Communities in the Chesapeake Bay by Using a DNA Macroarray. Applied and Environmental Microbiology, 70, 1767-1776.

[38]   Xie, Y., Chou, L., Cutler, A. and Weimer, B. (2004) DNA Macroarray Profiling of Lactococcus lactis subsp. lactis IL1403 Gene Expression during Environmental Stresses. Applied and Environmental Microbiology, 70, 6738-6747.

[39]   Leimena, M.M., Wels, M., Bongers, R.S., Smid, E.J., Zoetendal, E.G. and Kleerebezem, M. (2012) Comparative Analysis of Lactobacillus plantarum WCFS1 Transcriptomes by Using DNA Microarray and Next-Generation Sequencing Technologies. Applied and Environmental Microbiology, 78, 4141-4148.