[1] O’Regn, B. and Gratzel, M. (1991) A Low-Cost High Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740.
http://dx.doi.org/10.1038/353737a0
[2] Gratzel, M. (2005) Solar Energy Conversion by Dye-Sensitized Photo-Voltaic Cells. Inorganic Chemistry, 44, 6841-6851.
http://dx.doi.org/10.1021/ic0508371
[3] Gra1tze, M. (2004) Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-14.
http://dx.doi.org/10.1016/j.jphotochem.2004.02.023
[4] Gratzel, M. (2003) Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153.
http://dx.doi.org/10.1016/S1389-5567(03)00026-1
[5] Burschka, J., Pellet, N., Moon, S.-J., et al. (2013) Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499, 316-319.
http://dx.doi.org/10.1038/nature12340
[6] Van De Lagemaat, J. and Frank, A.J. (2001) Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films; Transient Photocurrent and Random Walk Modeling Studies. The Journal of Physical Chemistry B, 105, 11194-11205.
http://dx.doi.org/10.1021/jp0118468
[7] Asxhi, R., Morikxwx, T., Ohwxki, T., et al. (2001) Visible-Light Photocatalysis Innitrogen Doped Titanium Oxides. Science, 293, 269-271.
http://dx.doi.org/10.1126/science.1061051
[8] Konstantinova, E.A., Kokorin, A.I., Lips, K., Sakthivel, S. and Kisch, H. (2009) EPR Study of the Illumination Effect on Properties of Paramagnetic Centers in Nitrogen-Doped TiO2 Active in Visible Light Photocatalysis. Applied Magnetic Resonance, 35, 421-427.
http://dx.doi.org/10.1007/s00723-009-0173-5
[9] Menzies, D.B. and Dai, Q. (2007) Modifcation of Mesoporous TiO2 Electrodes by Surface Treatment with Titanium (IV), Indium (III) and Zirconium (IV) Oxideprecursors: Preparation, Characterization and Photovoltaic Performance in Dye-Sensitized Nanocrystalline Solar Cells. Nanotechnology, 18, 125608-125618.
http://dx.doi.org/10.1088/0957-4484/18/12/125608
[10] Zhang, C.N. and Dai, S. (2011) Charge Recombination and Band-Edge Shift in the Dye-Sensitized Mg2+-Doped TiO2 Solar Cells. The Journal of Physical Chemistry C, 115, 16418-16424.
http://dx.doi.org/10.1021/jp2024318
[11] Tian, H.J., Hu, L.H., Zhang, C.N., Liu, W.Q., Huang, Y., Mo, L., Guo, L., Sheng, J. and Dai, S.Y. (2010) Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells. Journal of Physical Chemistry C, 114, 1627-1632.
http://dx.doi.org/10.1021/jp9103646
[12] Du1rr, M., Rosselli, S., Yasuda, A. and Nelles, G. (2006) Band-Gap Engineering of Metal Oxides for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 110, 21899-21902.
http://dx.doi.org/10.1021/jp063857c
[13] Ito, S., Murakami, T.N., Comte, P., Liska, P., Gratzel, C., Nazeeruddin, M.K. and Gratzel, M. (2008) Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films, 516, 4613-4619.
http://dx.doi.org/10.1016/j.tsf.2007.05.090
[14] Alias, S.S. and Mohamad, A.A. (2014) Synthesis of Zinc Oxide by Sol-Gel Method for Photoelectrochemical Cells. Springer Briefs in Materials, Springer, Berlin.
[15] Innocenzi, P., Zub, Y.L. and Kessler, V.G. (2008) Sol-Gel Methods for Materials Processing. NATO Science for Peace and Security Series C: Environmental Security.
[16] Hocevar, M., Krasovec, U.O., Berginc, M., Drazic, G., Hauptman, N. and Topic, M. (2008) Development of TiO2 Pastes Modified with Pechini Sol-Gel Method for High Efficiency Dye-Sensitized Solar Cell. Journal of Sol-Gel Science and Technology, 48, 156-162.
[17] Pandey, R.N., Chandra Babu, K.S. and Srivastava, O.N. (1996) High Conversion Efficiency Photoelectrochemical Solar Cells. Progress in Surface Science, 52, 125-192.
http://dx.doi.org/10.1016/0079-6816(96)00009-3