Back
 APM  Vol.4 No.10 , October 2014
Dual Quermassintegral Differences for Intersection Body
Abstract: In this paper, we introduce the concept of dual quermassintegral differences. Further, we give the dual Brunn-Minkowski inequality and dual Minkowski inequality for dual quermassintegral differences for mixed intersection bodies.
Cite this paper: Zhao, L. and Yuan, J. (2014) Dual Quermassintegral Differences for Intersection Body. Advances in Pure Mathematics, 4, 529-534. doi: 10.4236/apm.2014.410061.
References

[1]   Bonnesen, T. and Fenchel, W. (1987) Theory of Convex Bodies, BCS Associates, Moscow, ID; German Original: Springer, Berlin, 1934.

[2]   Lutwak, E. (1988) Intersection Bodies and Dual Mixed Volumes. Advances in Mathematics, 71, 232-261.
http://dx.doi.org/10.1016/0001-8708(88)90077-1

[3]   Gardner, R.J. (1994) Intersection Bodies and the Busemann-Petty Problem. Transactions of the American Mathematical Society, 342, 435-445. http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7

[4]   Gardner, R.J. (1994) A Positive Answer to the Busemann-Petty Problem in Three Dimensions. Annals of Mathematics, 140, 435-447. http://dx.doi.org/10.2307/2118606

[5]   Goodey, P., Lutwak, E. and Weil, W. (1996) Functional Analytic Characterizations of Classes of Convex Bodies. Mathematische Zeitschrift, 222, 363-381. http://dx.doi.org/10.1007/BF02621871

[6]   Zhang, G.Y. (1999) A Positive Solution to the Busemann-Petty Problem in . Annals of Mathematics, 149 535-543.
http://dx.doi.org/10.2307/120974

[7]   Lutwak, E. (1993) Inequalities for Mixed Projection Bodies. Transactions of the American Mathematical Society, 339, 901-916. http://dx.doi.org/10.1090/S0002-9947-1993-1124171-8

[8]   Zhao, C.J. and Cheung, W.S. (2003) On P-Quermassintegral Differences Function. Proceedings of the Indian Academy of Science, 116, 221-231.

[9]   Zhao, C.J. and Leng, G.S. (2005) Brunn-Minkowski Inequality for Mixed Intersection Bodies. Journal of Mathematical Analysis and Applications, 301, 115-123. http://dx.doi.org/10.1016/j.jmaa.2004.07.013

[10]   Gardner, R.J. (2006) Geometric Tomography. 2nd Edition, Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9781107341029

[11]   Lutwak, E. (1986) Volume of Mixed Bodies. Transactions of the American Mathematical Society, 294, 487-450.
http://dx.doi.org/10.1090/S0002-9947-1986-0825717-3

[12]   Thompson, A.C. (1996) Minkowski Geometry. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9781107325845

[13]   Leng, G.S. (2004) The Brunn-Minkowski Inequality for Volume Differences. Advances in Applied Mathematics, 32, 615-624. http://dx.doi.org/10.1016/S0196-8858(03)00095-2

[14]   Zhang, G.Y. (1994) Centered Bodies and Dual Mixed Volumes. Transactions of the American Mathematical Society, 345, 777-801.

[15]   Losonczi, L. and Páles, Z. (1997) Inequalities for Indefinite Forms. Journal of Mathematical Analysis and Applications, 205, 148-156. http://dx.doi.org/10.1006/jmaa.1996.5188

[16]   Beckenbach, E.F. and Bellman, R. (1961) Inequalities. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-64971-4

 
 
Top