APM  Vol.4 No.10 , October 2014
Dual Quermassintegral Differences for Intersection Body
Author(s) Lingzhi Zhao1, Jun Yuan2*
ABSTRACT
In this paper, we introduce the concept of dual quermassintegral differences. Further, we give the dual Brunn-Minkowski inequality and dual Minkowski inequality for dual quermassintegral differences for mixed intersection bodies.

Cite this paper
Zhao, L. and Yuan, J. (2014) Dual Quermassintegral Differences for Intersection Body. Advances in Pure Mathematics, 4, 529-534. doi: 10.4236/apm.2014.410061.
References
[1]   Bonnesen, T. and Fenchel, W. (1987) Theory of Convex Bodies, BCS Associates, Moscow, ID; German Original: Springer, Berlin, 1934.

[2]   Lutwak, E. (1988) Intersection Bodies and Dual Mixed Volumes. Advances in Mathematics, 71, 232-261.
http://dx.doi.org/10.1016/0001-8708(88)90077-1

[3]   Gardner, R.J. (1994) Intersection Bodies and the Busemann-Petty Problem. Transactions of the American Mathematical Society, 342, 435-445. http://dx.doi.org/10.1090/S0002-9947-1994-1201126-7

[4]   Gardner, R.J. (1994) A Positive Answer to the Busemann-Petty Problem in Three Dimensions. Annals of Mathematics, 140, 435-447. http://dx.doi.org/10.2307/2118606

[5]   Goodey, P., Lutwak, E. and Weil, W. (1996) Functional Analytic Characterizations of Classes of Convex Bodies. Mathematische Zeitschrift, 222, 363-381. http://dx.doi.org/10.1007/BF02621871

[6]   Zhang, G.Y. (1999) A Positive Solution to the Busemann-Petty Problem in . Annals of Mathematics, 149 535-543.
http://dx.doi.org/10.2307/120974

[7]   Lutwak, E. (1993) Inequalities for Mixed Projection Bodies. Transactions of the American Mathematical Society, 339, 901-916. http://dx.doi.org/10.1090/S0002-9947-1993-1124171-8

[8]   Zhao, C.J. and Cheung, W.S. (2003) On P-Quermassintegral Differences Function. Proceedings of the Indian Academy of Science, 116, 221-231.

[9]   Zhao, C.J. and Leng, G.S. (2005) Brunn-Minkowski Inequality for Mixed Intersection Bodies. Journal of Mathematical Analysis and Applications, 301, 115-123. http://dx.doi.org/10.1016/j.jmaa.2004.07.013

[10]   Gardner, R.J. (2006) Geometric Tomography. 2nd Edition, Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9781107341029

[11]   Lutwak, E. (1986) Volume of Mixed Bodies. Transactions of the American Mathematical Society, 294, 487-450.
http://dx.doi.org/10.1090/S0002-9947-1986-0825717-3

[12]   Thompson, A.C. (1996) Minkowski Geometry. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9781107325845

[13]   Leng, G.S. (2004) The Brunn-Minkowski Inequality for Volume Differences. Advances in Applied Mathematics, 32, 615-624. http://dx.doi.org/10.1016/S0196-8858(03)00095-2

[14]   Zhang, G.Y. (1994) Centered Bodies and Dual Mixed Volumes. Transactions of the American Mathematical Society, 345, 777-801.

[15]   Losonczi, L. and Páles, Z. (1997) Inequalities for Indefinite Forms. Journal of Mathematical Analysis and Applications, 205, 148-156. http://dx.doi.org/10.1006/jmaa.1996.5188

[16]   Beckenbach, E.F. and Bellman, R. (1961) Inequalities. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-64971-4

 
 
Top