[1] Razzaq, N., Butt, M., Salman, M., Ali, R., Sadiq, I., Munawar, K. and Zaidi, T. (2013) An Intelligent Adaptive Filter for Fast Tracking and Elimination of Power Line Interference from ECG Signal. 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), Porto, 20-22 June 2013, 251-256.
[2] Sagie, A., Larson, M.G., Goldberg, R.J., Bengston, J.R. and Levy, D. (1992) An Improved Method for Adjusting the QT Interval for Heart Rate (the Framingham Heart Study). American Journal of Cardiology, 70, 797-801.
http://dx.doi.org/10.1016/0002-9149(92)90562-D
[3] Bazett, H.C. (1920) An Analysis of the Time-Relations of Electrocardiograms. Heart, 7, 353-370.
[4] Mane, R.S., Cheeran, A.N., Awandekar, V.D. and Rani, P. (2013) Cardiac Arrhythmia Detection by ECG Feature Extraction. International Journal of Engineering Research and Applications, 3, 327-332.
[5] Vaneghi, F.M., Oladazimi, M., Shiman, F., Kordi, A., Safari, M.J. and Ibrahim, F. (2012) A Comparative Approach to ECG Feature Extraction Methods. Proceedings of 2012 3rd International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kota Kinabalu, 8-10 February 2012, 252-256.
http://dx.doi.org/10.1109/ISMS.2012.35
[6] Mehta, S.S. and Lingayat, N.S. (2008) Detection of P and T-Waves in Electrocardiogram. Proceedings of the World Congress on Engineering and Computer Science, San Francisco, 22-24 October 2008, 22-24.
[7] Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.H., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K. and Stanley, H.E. (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, e215-e220.
http://circ.ahajournals.org/cgi/content/full/101/23/e215
[8] Razzaq, N., Butt, M., Salman, M., Ali, R., Sadiq, I., Munawar, K. and Zaidi, T. (2013) An Intelligent Adaptive Filter for Fast Tracking and Elimination of Power Line Interference from ECG Signal. 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), Porto, 20-22 June 2013, 251-256.
[9] Sagie, A., Larson, M.G., Goldberg, R.J., Bengston, J.R. and Levy, D. (1992) An Improved Method for Adjusting the QT Interval for Heart Rate (the Framingham Heart Study). American Journal of Cardiology, 70, 797-801.
http://dx.doi.org/10.1016/0002-9149(92)90562-D
[10] Bazett, H.C. (1920) An Analysis of the Time-Relations of Electrocardiograms. Heart, 7, 353-370.
[11] Mane, R.S., Cheeran, A.N., Awandekar, V.D. and Rani, P. (2013) Cardiac Arrhythmia Detection by ECG Feature Extraction. International Journal of Engineering Research and Applications, 3, 327-332.
[12] Vaneghi, F.M., Oladazimi, M., Shiman, F., Kordi, A., Safari, M.J. and Ibrahim, F. (2012) A Comparative Approach to ECG Feature Extraction Methods. Proceedings of 2012 3rd International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kota Kinabalu, 8-10 February 2012, 252-256. http://dx.doi.org/10.1109/ISMS.2012.35
[13] Mehta, S.S. and Lingayat, N.S. (2008) Detection of P and T-Waves in Electrocardiogram. Proceedings of the World Congress on Engineering and Computer Science, San Francisco, 22-24 October 2008, 22-24.
[14] Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.H., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K. and Stanley, H.E. (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, e215-e220.
http://circ.ahajournals.org/cgi/content/full/101/23/e215