WJNST  Vol.4 No.4 , October 2014
Electromagnetic Schr&oumldinger Equation of the Deuteron 2H (Heavy Hydrogen)
ABSTRACT
The binding energy of the deuteron is calculated electromagnetically with the Schrödinger equation. In mainstream nuclear physics, the only known Coulomb force is the repulsion between protons, inexistent in the deuteron. It is ignored that a proton attracts a neutron containing electric charges with no net charge and that the magnetic moments of the nucleons interact together significantly. A static equilibrium exists in the deuteron between the electrostatic attraction and the magnetic repulsion. The Heitler equation of the hydrogen atom has been adapted to its nucleus where the centrifugal force is replaced by the magnetic repulsive force, solved graphically, by trial and error, without fit to experiment. As by chance, one obtains, at the lowest horizontal inflection point, with a few percent precision, the experimental value of the deuteron binding energy. This success, never obtained elsewhere, proves the purely static and electromagnetic nature of the nuclear energy.

Cite this paper
Schaeffer, B. (2014) Electromagnetic Schr&oumldinger Equation of the Deuteron 2H (Heavy Hydrogen). World Journal of Nuclear Science and Technology, 4, 228-236. doi: 10.4236/wjnst.2014.44029.
References
[1]   Cook, N.D. (2010) Models of the Atomic Nucleus: Unification through a Lattice of Nucleons. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-14737-1

[2]   Wiringa, R.B., Stoks, V.G.J. and Schiavilla, R. (1995) Accurate Nucleon-Nucleon Potential with Charge-Independence Breaking. Physical Review Letters, C51, 38-51.
http://dx.doi.org/10.1103/PhysRevC.51.38

[3]   Coulomb (1785) Second Mémoire Sur L’électricité et le Magnétisme.

[4]   Poisson (1824) Théorie du Magnétisme, Mémoires de l’Académie Royale des Sciences, 1824.

[5]   Maxwell, J.C. (2010) A Treatise on Electricity and Magnetism. Vol. 2, Cambridge University Press, Cambridge.

[6]   Born, M. (1958) Europe and Science. Bulletin of the Atomic Scientists, 14, 74.

[7]   Bloch, F. (1938) Le Moment Magnetique du Neutron. Annales de l’Institut Henri Poincaré 8, 63-78.

[8]   Committee on Nuclear Physics, National Research Council, Division on Engineering and Physical Sciences, Board on Physics and Astronomy (1999) Nuclear Physics, The Core of Matter, The Fuel of Stars. National Academies Press, Washington DC.

[9]   Evans, R.D. (1969) The Atomic Nucleus. McGraw-Hill, Boston.

[10]   Schaeffer, B. (2013) Electric and Magnetic Coulomb Potentials in the Deuteron. Advanced Electromagnetics, 2, 69-72.
http://dx.doi.org/10.7716/aem.v2i1.218

[11]   Feynman, R., Leighton, R.B. and Sands, M. (2006) The Feynman Lectures on Physics 2. Pearson/Addison-Wesley, Reading.

[12]   Owen, G.E. (2003) Introduction to Electromagnetic Theory. Courier Dover Publications, New York.

[13]   Yosida, K. (1996) Theory of Magnetism. Springer, Berlin.

[14]   Weisskopf, V.F. and Blatt, J.M. (1991) Theoretical Nuclear Physics. Courier Dover Publications, New York.

[15]   Heitler, W. (1961) Elementary Wave Mechanics. Oxford University Press, Oxford.

[16]   Schaeffer, B. (2012) Ab Initio Calculation of 2H and 4He Binding Energies. Journal of Modern Physics, 3, 1709-1715.
http://dx.doi.org/10.4236/jmp.2012.311210

[17]   Schaeffer, B. (2011) Electromagnetic Theory of the Binding Energy of the Hydrogen Isotopes. Journal of Fusion Energy, 30, 377-381.
http://dx.doi.org/10.1007/s10894-010-9365-0

[18]   Schaeffer, B. (2014) Electromagnetic Interactions in an Atomic Nucleus. ATINER’s Conference Paper Series, PHY2014-1198.

[19]   Mohr, P.J., Taylor, B.N. and Newel, D.B. (2012) CODATA Recommended Values of the Fundamental Physical Constants: 2010. Reviews of Modern Physics, 84, 1527-1605.
http://dx.doi.org/10.1103/RevModPhys.84.1527

 
 
Top