Health  Vol.6 No.18 , October 2014
Arg-Ser-775, 792 and 823 in Spacer Region of ADAMTS-18 Is Critical for Thrombin Cleavage
Abstract: Cleavage of ADAMTS-18 by thrombin represents a new mechanism of platelet thrombus clearance via the release of active ~45-kDa C-terminal fragments that induces oxidative platelet fragmentation. The exact cleavage sites remain unclear, but Arg (R)775/Ser (S)776 in spacer region of ADAMTS-18 has been shown to be one of the cleavage sites of thrombin. Here, we demonstrate that R792/S793 and R823/S824 are also thrombin cleavage sites by sequence analysis, amino acid mutation and mass spectrometry assay. All these cleavage sites are thrombin-specific and insensitive to other enzymes tested (e.g. cathepsin D or trypsin). Simultaneous mutation of R775, 792, 823 to S775, 792, 823 in ADAMTS-18 completely abrogated the cleavage by thrombin and the generation of active C-terminal 45-kDa fragments. Together with previous study, a total of three thrombin-specific cleavage sites have been identified in spacer region of ADAMTS-18.
Cite this paper: Tang, J. , Huang, W. , Shen, N. , Hong, T. , Dang, S. and Zhang, W. (2014) Arg-Ser-775, 792 and 823 in Spacer Region of ADAMTS-18 Is Critical for Thrombin Cleavage. Health, 6, 2490-2498. doi: 10.4236/health.2014.618286.

[1]   Apte, S.S. (2009) A Disintegrin-Like and Metalloprotease (Reprolysin-Type) with Thrombospondin Type 1 Motif (ADAMTS) Superfamily: Functions and Mechanisms. The Journal of Biological Chemistry, 284, 31493-31497.

[2]   Guo, F., Lai, Y., Tian, Q., Lin, E.A., Kong, L. and Liu, C. (2010) Granulin-Epithelin Precursor Binds Directly to ADAMTS-7 and ADAMTS-12 and Inhibits Their Degradation of Cartilage Oligomeric Matrix Protein. Arthritis & Rheumatology, 62, 2023-2036.

[3]   Li, S.W., Arita, M., Fertala, A., Bao, Y., Kopen, G.C., Langsjo, T.K., Hyttinen, M.M., Helminen, H.J. and Prockop, D.J. (2001) Transgenic Mice with Inactive Alleles for Procollagen N-Proteinase (ADAMTS-2) Develop Fragile Skin and Male Sterility. Biochemical Journal, 355, 271-278.

[4]   Georgiadis, K.E., Hirohata, S., Seldin, M.F. and Apte, S.S. (1999) ADAM-TS8, a Novel Metalloprotease of the ADAM-TS Family Located on Mouse Chromosome 9 and Human Chromosome 11. Genomics, 62, 312-315.

[5]   Clark, M.E., Kelner, G.S., Turbeville, L.A., Boyer, A., Arden, K.C. and Maki, R.A. (2000) ADAMTS9, a Novel Member of the ADAM-TS/Metallospondin Gene Family. Genomics, 67, 343-350.

[6]   Lam, J.K., Chion, C.K., Zanardelli, S., Lane, D.A. and Crawley, J.T. (2007) Further Characterization of ADAMTS-13 Inactivation by Thrombin. Journal of Thrombosis and Haemostasis, 5, 1010-1018.

[7]   Cal, S., Arguelles, J.M., Fernandez, P.L. and López-Otín, C. (2001) Identification, Characterization, and Intracellular Processing of ADAM-TS12, a Novel Human Disintegrin with a Complex Structural Organization Involving Multiple Thrombospondin-1 Repeats. The Journal of Biological Chemistry, 276, 17932-17940.

[8]   Liu, Y.J., Xu, Y. and Yu, Q. (2006) Full-Length ADAMTS-1 and the ADAMTS-1 Fragments Display Pro- and Antimetastatic Activity, Respectively. Oncogene, 25, 2452-2467.

[9]   Gao, G., Plaas, A., Thompson, V.P., Jin, S., Zuo, F. and Sandy, J.D. (2004) ADAMTS4 (Aggrecanase-1) Activation on the Cell Surface Involves C-Terminal Cleavage by Glycosylphosphatidyl Inositol-Anchored Membrane Type 4-Matrix Metalloproteinase and Binding of the Activated Proteinase to Chondroitin Sulfate and Heparan Sulfate on Syndecan-1. The Journal of Biological Chemistry, 279, 10042-10051.

[10]   Jin, H., Wang, X., Ying, J., Wong, A.H., Li, H., Lee, K.Y., Srivastava, G., Chan, A.T., Yeo, W., Ma, B.B., Putti, T.C., Lung, M.L., Shen, Z.Y., Xu, L.Y., Langford, C. and Tao, Q. (2007) Epigenetic Identification of ADAMTS18 as a Novel 16q23.1 Tumor Suppressor Frequently Silenced in Esophageal, Nasopharyngeal and Multiple Other Carcinomas. Oncogene, 26, 7490-7498.

[11]   Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S.D., Willis, J., Dawson, D., Willson, J.K., Gazdar, A.F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B.H., Bachman, K.E., Papado-poulos, N., Vogelstein, B., Kinzler, K.W. and Velculescu, V.E. (2006) The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science, 314, 268-274.

[12]   Xiong, D.H., Liu, X.G., Guo, Y.F., Tan, L.J., Wang, L., Sha, B.Y., Tang, Z.H., Pan, F., Yang, T.L., Chen, X.D., Lei, S.F., Yerges, L.M., Zhu, X.Z., Wheeler, V.W., Patrick, A.L., Bunker, C.H., Guo, Y., Yan, H., Pei, Y.F., Zhang, Y.P., Levy, S., Papasian, C.J., Xiao, P., Lundberg, Y.W., Recker, R.R., Liu, Y.Z., Liu, Y.J., Zmuda, J.M. and Deng, H.W. (2009) Genome-Wide Association and Follow-Up Replication Studies Identified ADAMTS18 and TGFBR3 as Bone Mass Candidate Genes in Different Ethnic Groups. The American Journal of Human Genetics, 84, 388-398.

[13]   Aldahmesh, M.A., Alshammari, M.J., Khan, A.O., Mohamed, J.Y., Alhabib, F.A. and Alkuraya, F.S. (2013) The Syndrome of Microcornea, Myopic Chorioretinal Atrophy, and Telecanthus (MMCAT) Is Caused by Mutations in ADAMTS18. Human Mutation, 34, 1195-1199.

[14]   Shattil, S.J. and Ginsberg, M.H. (1997) Perspectives Series: Cell Adhesion in Vascular Biology. Integrin Signaling in Vascular Biology. The Journal of Clinical Investigation, 100, 1-5.

[15]   Nardi, M., Tomlinson, S., Greco, M.A. and Karpatkin, S. (2001) Complement-Independent, Peroxide-Induced Antibody Lysis of Platelets in HIV-1-Related Immune Thrombocytopenia. Cell, 106, 551-561.

[16]   Nardi, M., Feinmark, S.J., Hu, L., Li, Z. and Karpatkin, S. (2004) Complement-Independent Ab-Induced Peroxide Lysis of Platelets Requires 12-Lipoxygenase and a Platelet NADPH Oxidase Pathway. The Journal of Clinical Investigation, 113, 973-980.

[17]   Li, Z., Nardi, M.A., Li, Y.S., Zhang, W., Pan, R., Dang, S., Yee, H., Quartermain, D., Jonas, S. and Karpatkin, S. (2009) C-Terminal ADAMTS-18 Frag-ment Induces Oxidative Platelet Fragmentation, Dissolves Platelet Aggregates, and Protects against Carotid Artery Occlusion and Cerebral Stroke. Blood, 113, 6051-6060.

[18]   Wang, J., Zhang, W., Yi, Z., Wang, S. and Li, Z. (2012) Identification of a Thrombin Cleavage Site and a Short Form of ADAMTS-18. Biochemical and Biophysical Research Communications, 419, 692-697.

[19]   Vázquez, F., Hastings, G., Ortega, M.A., Lane, T.F., Oikemus, S., Lombardo, M. and Iruela-Arispe, M.L. (1999) METH-1, a Human Ortholog of ADAMTS-1, and METH-2 Are Members of a New Family of Proteins with Angio-Inhibitory Activity. The Journal of Biological Chemistry, 274, 23349-23357.

[20]   Gao, G., Westling, J., Thompson, V.P., Howell, T.D., Gottschall, P.E. and Sandy, J.D. (2002) Activation of the Proteolytic Activity of ADAMTS4 (Aggrecanase-1) by C-Terminal Truncation. The Journal of Biological Chemistry, 277, 11034-11041.

[21]   Rodriguez-Manzaneque, J.C., Milchanowski, A.B., Dufour, E.K., Leduc, R. and Iruela-Arispe, M.L. (2000) Characterization of METH-1/ADAMTS1 Processing Reveals Two Distinct Active Forms. The Journal of Biological Chemistry, 275, 33471-33479.

[22]   Flannery, C.R., Zeng, W., Corcoran, C., Collins-Racie, L.A., Chockalingam, P.S., Hebert, T., Mackie, S.A., McDonagh, T., Crawford, T.K., Tomkinson, K.N., LaVallie, E.R. and Morris, E.A. (2002) Autocatalytic Cleavage of ADAMTS-4 (Aggrecanase-1) Reveals Multiple Glycosaminoglycan-Binding Sites. The Journal of Biological Chemistry, 277, 42775-42780.

[23]   Muroi, C., Fujioka, M., Mishima, K., Irie, K., Fujimura, Y., Nakano, T., Fandino, J., Keller, E., Iwasaki, K. and Fujiwara, M. (2014) Effect of ADAMTS-13 on Cerebrovascular Microthrombosis and Neuronal Injury after Experimental Subarachnoid Hemorrhage. Journal of Thrombosis and Haemostasis, 12, 505-514.