WJNST  Vol.4 No.4 , October 2014
On a New Elementary Particle from the Disintegration of the Symplectic 't Hooft-Veltman-Wilson Fractal Spacetime
Abstract: 't Hooft-Veltman Wilson dimensional regularization depends crucially upon Borel summability which entails strong links to the modern mathematical theory of transfinite sets and consequently to the fractal-Cantorian spacetime proposal of Ord-Nottale-El Naschie. Starting from the above, we interpret the main step of the mathematical analysis in terms of elementary particles interaction. Thus 't Hooft-Veltman “perturbation” parameter which measures the deviation of the regulated space from the four dimensionality of spacetime is interpreted as an elementary particle with a topological mass charge equal to 0.18033989, i.e. double the magnitude of Hardy’s quantum entanglement. In turn, Hardy’s quantum entanglement which may be interpreted geometrically as a consequence of the zero set embedded in an empty set could also be interpreted as an exchange of pseudo elementary particles with a topological mass charge equal to Hardy’s entanglement where is the Hausdorff dimension of the zero set of the corresponding 't Hooft-Veltman spacetime.
Cite this paper: El Naschie, M. (2014) On a New Elementary Particle from the Disintegration of the Symplectic &#39t Hooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, 216-221. doi: 10.4236/wjnst.2014.44027.

[1]   tHooft, G. (1973) Dimensional Regularization and the Renormalization Group. Nuclear Physics B, 61, 455-468.

[2]   tHooft, G. and Veltman, M. (1972) Regularization and Renormalization of Gauge Fields. Nuclear Physics B, 44, 189213.

[3]   Wilson, K.G. and Kogul, J. (1974) The Renormalization Group and the E Expansion. Physics Reports, 12, 75-199.

[4]   El Naschie, M.S. (2014) Cosmic Dark Energy from t Hooft’s Dimensional Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, 4, 83-91.

[5]   El Naschie, M.S. (2014) Asymptotically Safe Pure Gravity as the Source of Dark Energy of the Vacuum. Astrophysics and Space Science, 2, 12-15.

[6]   Wilson, K.G. (1974) Critical Phenomena in 3.99 Dimensions. Physica, 73, 119-128.

[7]   El Naschie, M.S. (2014) Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. American Journal of Modern Physics, 3, 82-87.

[8]   Wilson, K.G. and Fisher, M.E. (1972) Critical Exponents in 3.99 Dimensions. Physical Review Letters, 28, 240.

[9]   El Naschie, M.S. (2001) On tHooft Dimensional Regularization in E-Infinity Space (with Letter from R. Feynman to G. Ord Dated 1982). Chaos, Solitons & Fractals, 30, 855-858.

[10]   Brezin, E. (2014) Wilson Renormalization Group: A Paradigmatic Shift. arXiv:1402.34337VI[physics.hist-ph]

[11]   Polyakov, A.M. (1970) Conformal Symmetry of Critical Fluctuation. JETP Letters, 12, 381-383.

[12]   El Naschie, M.S. (2001) ’t Hooft Dimensional Regularization Implies Transfinite Heterotic String Theory and Dimensional Transmutation. In: Sidharth, B.G. and Altaisky, M.V., Eds., Frontiers of Fundamental Physics 4, Springer, Berlin, 81-86.

[13]   Marek-Crnjac, L. (2009) Partially Ordered Sets, Transfinite Topology and the Dimension of Cantorian-Fractal Spacetime. Chaos, Solitons & Fractals, 42, 1796-1799.

[14]   Zhong, T. (2009) From the Numerics of Dynamics to the Dynamics of Numeric and Visa Versa in High Energy Particle Physics. Chaos, Solitons & Fractals, 42, 1780-1783.

[15]   Graham, L. and Kantor, J. (2009) Naming Infinity. Harvard University Press, Cambridge.

[16]   El Naschie, M.S. (2004) A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.

[17]   El Naschie, M.S. (2012) E-Infinity High Energy Communications Nos. 71-90. El Naschie Watch—Genuine Scientific Blog for E-Infinity, Noncommutative Geometry, Fractal Spacetime, Innovative Geometrical and Number Theoretical Methods in High Energy Physics and Quantum Gravity.

[18]   Ho, M.-W. (2014) The Story of Phi, Part 1; Watching the Daises Grow, Part 2; Golden Music of The Brain, Part 3; Golden Cycles and Organic Spacetime, Part 4; Golden Geometry of E-infinity Fractal Spacetime, Part 5; Science of the Organism. Institute of Science in Society.

[19]   ISIS Report (2014) E-Infinity Spacetime, Quantum Paradoxes and Quantum Gravity. Journal of the Institute of Science in Society, Reports Nos. 03/03/14 to 07/04/14.

[20]   May, P. (1977) E-Infinity Spaces and E-Infinity Ring Spectra. Lecture Notes in Mathematics. Springer, Berlin.

[21]   El Naschie, M.S. (2004) The Symplectic Vacuum, Exotic Quasi Particles and Gravitational Instantons. Chaos, Solitons & Fractals, 22, 1-11.

[22]   El Naschie, M.S. (2004) Topological Defects in the Symplectic Vacuum Anomalous Positron Production and Gravitational Instantons. International Journal of Modern Physics E, 13, 835-849.

[23]   El Naschie, M.S. (2004) New Elementary Particles as a Possible Product of the Disintegration of the Symplectic Vacuum. Chaos, Solitons & Fractals, 20, 905-913.

[24]   Shalaby, A.M. (2007) The Fractal Self-Similar Borel Algorithm for the Effective Potential of the Scalar Field Theory in One Time plus One Space Dimensions. Chaos, Solitons & Fractals, 34, 709-716.

[25]   El Naschie, M.S. (2014) Rindler Space Derivation of Dark Energy. Journal of Modern Physics & Applications, 2014, 6.

[26]   El Naschie, M.S. (2008) Kaluza-Klein Unification—Some Possible Extensions. Chaos, Solitons & Fractals, 37, 16-22.

[27]   El Naschie, M.S. (2013) Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method. Journal of Modern Physics, 4, 757-760.

[28]   Marek-Crnjac, L., El Naschie, M.S. and He, J.-H. (2013) Chaotic Fractals at the Relativistic Quantum Physics and Cosmology. International Journal of Modern Nonlinear Theory & Applications, 2, 78-88.

[29]   El Naschie, M.S. (2014) Pinched Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.

[30]   El Naschie, M.S., Olsen, S., He, J.-H., Nada, S., Marek-Crnjac, L. and Helal, A. (2012) On the Need for Fractal Logic in High Energy Quantum Physics. International Journal of Modern Nonlinear Theory & Applications, 2, 84-92.

[31]   El Naschie, M.S. (2008) From Classical Gauge Theory Back to Weyl Scaling via E-infinity spacetime. Chaos, Solitons & Fractals, 38, 980-985.

[32]   Marek-Crnjac, L. (2009) A Feynman Path Integral-Like Method for Deriving the Four Dimensionality of Spacetime from First Principles. Chaos, Solitons & Fractals, 41, 2471-2473.

[33]   Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) The Three Page Guide to the Most Important Results of M.S. El Nashie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.

[34]   Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego.

[35]   Nottale, L. (2011) Scale Relativity and Fractal Space-Time. Imperial College Press, London.

[36]   El Naschie, M.S. (2011) Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1, 50-53.

[37]   El Naschie, M.S. (2008) On the Fundamental Equations of the Constants of Nature. Chaos, Solitons & Fractals, 35, 320-323.

[38]   El Naschie, M.S. (2014) To Dark Energy Theory from a Cosserat-Like Model of Spacetime. In: Problems of Nonlinear Analysisin Engineering Systems, Kazan Press, Kazan, 20.

[39]   El Naschie, M.S., Marek-Crnjac, L., Helal, M.A. and He, J.-H. (2014) A Topological Magueijo-Smolin Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the Dark Energy of Pure Gravity. Applied Mathematics, 5, 1780-1790.