Back
 OJS  Vol.4 No.9 , October 2014
On Diagnostics in Stochastic Restricted Linear Regression Models
Abstract: The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results.
Cite this paper: Wang, S. , Liu, M. and Deng, X. (2014) On Diagnostics in Stochastic Restricted Linear Regression Models. Open Journal of Statistics, 4, 757-764. doi: 10.4236/ojs.2014.49071.
References

[1]   Theil, H. (1963) On the Use of Incomplete Prior Information in Regression Analysis. Journal of the American Statistical Association, 58, 401-414.
http://dx.doi.org/10.1080/01621459.1963.10500854

[2]   Hubert, M.H. and Wijekoon, P. (2006) Improvement of the Liu Estimator in Linear Regression Model. Statistical Papers, 47, 471-479.
http://dx.doi.org/10.1007/s00362-006-0300-4

[3]   Li, Y. and Yang, H. (2010) A New Stochastic Mixed Ridge Estimator in Linear Regression Model. Statistical Papers, 51, 315-323.
http://dx.doi.org/10.1007/s00362-008-0169-5

[4]   Wu, J. (2014) On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in Linear Regression Model. Journal of Applied Mathematics, 2014, Article ID: 173836.

[5]   Schafrin, B. and Toutenburg, H. (1990) Weighted Mixed Regression. Zeitschrit fur Angewandte Mathematik und Mechanik, 70, T735-T738.

[6]   Li, Y. and Yang, H. (2011) A New Ridge-Type Estimator in Stochastic Restricted Linear Regression. Statistics, 45, 123-130.
http://dx.doi.org/10.1080/02331880903573153

[7]   Liu, C.L., Jiang, H.N., Shi, X.H. and Liu, D.L. (2014) Two Kinds of Weighted Biased Estimators in Stochastic Restricted Regression Model. Journal of Applied Mathematics, 2014, Article ID: 314875.

[8]   He, D.J. and Wu, Y. (2014) A Stochastic Restricted Components Regression Estimator in the Linear Model. The Science World Journal, 2014, Article ID: 231506.

[9]   Liu, C.L., Yang, H. and Wu, J.B. (2014) On the Weighted Mixed Almost Unbiased Ridge Estimator in Stochastic Restricted Linear Regression. Journal of Applied Mathematics, 2014, Article ID: 902715.

[10]   Wu, J.B. and Liu, C.L. (2014) Performance of Some Stochastic Restricted Ridge Estimator in Linear Regression Model. Journal of Applied Mathematics, 2014, Article ID: 508793.

[11]   Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression. Chapman and Hall, New York.

[12]   Wei, B., Lu, G. and Shi, J. (1990) Statistical Diagnostics. Publishing House of Southeast University, Nanjing.

[13]   Wang, J. (2007) Statistical Diagnosis of Linear Regression Model with the Random Constraints and BAYES Method. Nanjing University of Science and Technology, Nanjing.

[14]   Yang, L. and Yang, H. (2007) Influence of Linear Model under Ellipsoidal Restriction. Chinese Journal of Engineering Mathematics, 24, 60-64.

[15]   Wang, L. (2008) Statistical Diagnosis of Linear Model under Linear Restriction. Nanjing University of Science and Technology, Nanjing.

[16]   Durbin, J. (1953) A Note on Regression When There Is Extra Neous Information about One of the Coefficients. Journal of the American Statistical Association, 48, 799-808.
http://dx.doi.org/10.1080/01621459.1953.10501201

[17]   Theil, H. and Goldberger, A.S. (1961) On Pure and Mixed Statistical Estimation in Economics. International Economic Review, 2, 65-78.
http://dx.doi.org/10.2307/2525589

[18]   Özkale, M.R. (2009) A Stochastic Restricted Ridge Regression Estimator. Journal of Multivariate Analysis, 100, 1706-1716.

[19]   Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12, 55-67.
http://dx.doi.org/10.1080/00401706.1970.10488634

[20]   Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Applications to Nonorthogonal Problems. Technometrics, 12, 69-82.
http://dx.doi.org/10.1080/00401706.1970.10488635

[21]   Hoerl, A.E., Kennard, R.W. and Baldwin, K.F. (1975) Ridge Regression: Some Simulation. Communications in Statistics: Theory and Methods, 4, 105-123.

[22]   Schaefer, R.L., Roi, L.D. and Wolfe, R.A. (1984) A Ridge Logistic Estimator. Communications in Statistics: Theory and Methods, 13, 99-113.
http://dx.doi.org/10.1080/03610928408828664

[23]   Kibria, B.M.G., Mansson, K. and Shukur, G. (2011) Performance of Some Logistic Ridge Regression Estimators. Computational Economics, 40, 401-414.
http://dx.doi.org/10.1007/s10614-011-9275-x

 
 
Top