OJMS  Vol.4 No.4 , October 2014
Extended (G'/G) Method Applied to the Modified Non-Linear Schrodinger Equation in the Case of Ocean Rogue Waves
ABSTRACT
The existence of rogue (or freak) waves is now universally recognized and material proofs on the extent of damage caused by these ocean’s phenomena are available. Marine observations as well as laboratory experiments show exactly that rogue waves occur in deep and shallow water. To study the behavior of freak waves in terms of their space and time evolution, that is, their motion and also in terms of mechanical transformations that these systems may suffer in their dealings with other systems, we derive a modified nonlinear Schrödinger equation modeling the propagation of rogue waves in deep water in order to seek analytic solutions of this nonlinear partial differential equation by using generalized extended G'/G-expansion method with the aid of mathematica. Particular attentions have been paid to the behavior of rogue wave’s amplitude which highlights rogue wave’s destructive power.

Cite this paper
Stéphane, A. , Augustin, D. and César, M. (2014) Extended (G'/G) Method Applied to the Modified Non-Linear Schrodinger Equation in the Case of Ocean Rogue Waves. Open Journal of Marine Science, 4, 246-256. doi: 10.4236/ojms.2014.44023.
References
[1]   Mallory, J.K. (1974) Abnormal Waves on the South-East of South Africa. International Hydrographic Review, 51, 89-129.

[2]   Lavrenov, I. (1998) The Wave Energy Concentration at the Agulhas Current of South Africa. Natural Hazards, 17, 117-127.
http://dx.doi.org/10.1023/A:1007978326982

[3]   Lawton, G. (2001) Monters of the Deep (the Perfect Wave). New Scientist, 170, 28-32.

[4]   Nikolkina, I. and Didenkulova, I. (2011) Rogue Waves in 2006-2010. Natural Hazards and Earth System Sciences, 11, 2913-2924.
http://dx.doi.org/10.5194/nhess-11-2913-2011

[5]   Rosenthal, W., Lehner, S., Dankert, H., Guenther, H., Hessner, K., Horstmann, J., Niedermeier, A., Nieto-Borger, J.C., Schulz Stellenfleth, J. and Reichert, K. (2003) Detection of Extreme Single Waves and Wave Statistics. In: Rogue Waves: Forecast and Impact on Marine Structures, GKSS Research Center, Geesthacht, Germany, Papers WP 1, 3.

[6]   Lehner, S., Gunther, H. and Rosenthal, W. (2005) Extreme Wave Observations from Radar Data Sets, Ocean Waves Measurements and Analysis. 5th International Symposium, WAVES 2005, Madrid, 3-7 July 2005, Paper 69.

[7]   Kharif, C. and Pelinovsky, E. (2003) Physical Mechanisms of the Rogue Wave Phenomenon. European Journal of Mechanics—B/Fluids, 22, 603-634.

[8]   Dysthe, K., Krogstad, H.E. and Muller, P. (2008) Oceanic Rogue Waves. Annual Review of Fluid Mechanics, 40, 287310.
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203

[9]   Kharif, C., Pelinovsky, E. and Slunyaev, A. (2009) Rogue Waves in the Ocean. Springer Verlag, Berlin.

[10]   Gramstad, O. and Trulsen, K. (2007) Influence of Crest and Group Length on the Occurrence of Freak Waves. Journal of Fluid Mechanics, 582, 463-472.
http://dx.doi.org/10.1017/S0022112007006507

[11]   Mori, N., Liu, P.C. and Yasuda, T. (2002) Analysis of Freak Wave Measurements in the Sea of Japan. Ocean Engineering, 29, 1399-1414.
http://dx.doi.org/10.1016/S0029-8018(01)00073-7

[12]   Onorato, M., Osborne, A.R., Serio, M. and Cavaleri, L. (2005) Modulational Instability and Non-Gaussian Statistics in Experimental Random Water-Wave Trains. Physics of Fluids, 17, Article ID: 078101.
http://dx.doi.org/10.1063/1.1946769

[13]   Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P.A.E.M., Kinoshita, T., Monbaliu, J., Mori, N., Osborne, A.R., Serio, M., Stansberg, C., Tamura, H. and Trulsen, K. (2009) Statistical Properties of Directional Ocean Waves: The Role of the Modulational Instability in the Formation of Extreme Events. Physical Review Letters, 102, Article ID: 114502.
http://dx.doi.org/10.1103/PhysRevLett.102.114502

[14]   Socquet-Juglard, H., Dysthe, K., Trulsen, K., Krogstad, H. and Liu, J. (2005) Distribution of Surface Gravity Waves during Spectral Changes. Journal of Fluid Mechanics, 542, 195-216.

[15]   Tamura, H., Waseda, T. and Miyazawa, Y. (2009) Freakish Sea State and Swell-Windsea Coupling: Numerical Study of the Suwa-Maru Incident. Geophysical Research Letters, 36.
http://dx.doi.org/10.1029/2008GL036280

[16]   Toffoli, A., Onorato, M., Babanin, A.V., Bitner-Gregersen, E., Osborne, A.R., Monbaliu, J., et al. (2007) Second-Order Theory and Setup in Surface Gravity Waves: A Comparison with Experimental Data. Journal of Physical Oceanography, 37, 2726-2739.
http://dx.doi.org/10.1175/2007JPO3634.1

[17]   Toffoli, A., Gramstad, O., Trulsen, K., Monbaliu, J., Bitner-Gregersen, E.M. and Onorato, M. (2010) Evolution of Weakly Nonlinear Random Directional Waves: Laboratory Experiments and Numerical Simulations. Journal of Fluid Mechanics, 664, 313-336.
http://dx.doi.org/10.1017/S002211201000385X

[18]   Waseda, T., Kinoshita, T. and Tamura, H. (2009) Evolution of a Random Directional Wave and Freak Wave Occurrence. Journal of Physical Oceanography, 39, 621-639.
http://dx.doi.org/10.1175/2008JPO4031.1

[19]   Waseda, T., Hallerstig, M., Ozaki, K. and Tomita, H. (2011) Enhanced Freak Wave Occurrence with Narrow Directional Spectrum in the North Sea. Geophysical Research Letters, 38.
http://dx.doi.org/10.1029/2011GL047779

[20]   Lechuga, A. (2012) Generation of Rogue Waves in a Wave Tank. Geophysical Research Abstracts, 14, 1.

[21]   Lechuga, A. (2013) Rogue Waves in a Wave Tank: Experiments and Modeling. Natural Hazards and Earth System Sciences, 13, 2951-2955.
http://dx.doi.org/10.5194/nhess-13-2951-2013

[22]   Nwatchok, S.A.A., Biouele, C.M., Zobo, B.E. and Nkomom, T.N. (2011) Application of Zakharov Equation in Three Dimensions to Deep Water Gravity Waves. International Journal of the Physical Sciences, 6, 7447-7455.

[23]   Zakharov, V. and Ostrovsky, L. (2009) Modulation Instability: The Beginning. Physica D: Nonlinear Phenomena, 238, 540-548.
http://dx.doi.org/10.1016/j.physd.2008.12.002

[24]   Osborne, A.R. (2010) Nonlinear Ocean Waves and the Inverse Scattering Transform. International Geophysics Series, Elsevier, San Diego.

[25]   Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C. and Stansberg, C. (2006) Extreme Waves, Modulational Instability and Second Order Theory: Wave Flume Experiments on Irregular Waves. European Journal of Mechanics, B/Fluids, 25, 586-601.
http://dx.doi.org/10.1016/j.euromechflu.2006.01.002

[26]   Toffoli, A., Onorato, M., Bitner-Gregersen, E., Osborne, A.R. and Babanin, A.V. (2008) Surface Gravity Waves from Direct Numerical Simulations of the Euler Equations: A Comparison with Second-Order Theory. Ocean Engineering, 35, 367-379.
http://dx.doi.org/10.1016/j.oceaneng.2007.10.004

[27]   Zakharov, V.E., Dyachenko, A.I. and Shamin, R.V. (2010) How Probability for Freak Wave Formation Can Be Found. The European Physical Journal Special Topics, 185, 113-124.
http://dx.doi.org/10.1140/epjst/e2010-01242-y

[28]   Bitner-Gregersen, E.M. and Toffoli, A. (2012) On the Probability of Occurrence of Rogue Waves. Natural Hazards and Earth System Sciences, 12, 751-762.

[29]   Akhmediev, N., Eleonskii, V.Z. and Kulagin, N. (1985) Generation of Periodic Trains of Picosecond Pulses in an Optical Fiber: Exact Solutions. Soviet Physics, JETP, 62, 894-899.

[30]   Akhmediev, N., Ankiewicz, A. and Soto-Crespo, J.M. (2009) Rogue Waves and Rational Solutions of the Nonlinear Schrödinger Equation. Physical Review E, 80, Article ID: 026601.
http://dx.doi.org/10.1103/PhysRevE.80.026601

[31]   Akhmediev, N., Ankiewicz, A. and Taki, M. (2009) Waves That Appear from Nowhere and Disappear without a Trace. Physical Letters A, 373, 675-678.
http://dx.doi.org/10.1016/j.physleta.2008.12.036

[32]   Akhmediev, N., Soto-Crespo, J.M. and Ankiewicz, A. (2009) Extreme Waves That Appear from Nowhere: On the Nature of Rogue Waves. Physical Letters A, 373, 2137-2145.
http://dx.doi.org/10.1016/j.physleta.2009.04.023

[33]   Wang, M., Li, X. and Zhang, J. (2008) The (G’/G)-Expansion Method and Traveling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physical Letters A, 372, 417-423.

[34]   Bekir, A. (2008) Application of the (G’/G)-Expansion Method for Nonlinear Evolution Equations. Physical Letters A, 372, 3400-3406.
http://dx.doi.org/10.1016/j.physleta.2008.01.057

[35]   Zedan, H.A. (2010) New Classes of Solutions for a System of Partial Differential Equations by (G’/G)-Expansion Method. Nonlinear Science Letters A, 1, 219-238.

[36]   Zhang, J., Wei, X. and Lu, Y. (2008) A Generalized (G’/G)-Expansion Method and Its Applications. Physical Letters A, 372, 3653-3658.
http://dx.doi.org/10.1016/j.physleta.2008.02.027

[37]   Zayed, E.M.E. and Gepreel, K.A. (2009) The (G’/G)-Expansion Method for Finding Traveling Wave Solutions of Nonlinear Partial Differential Equations in Mathematical Physics. Journal of Mathematical Physics, 50, Article ID: 013502.
http://dx.doi.org/10.1063/1.3033750

[38]   Zakharov, V.E. (1968) Stability of Periodic Waves of Finite Amplitude on the Surface of Deep Fluid. Journal of Applied Mechanics and Technical Physics, 2, 190-194.

[39]   Krasitskii, V.P. (1994) On Reduced Equations in the Hamiltonian Theory of Weakly Nonlinear Surface Waves. Journal of Fluid Mechanics, 272, 1-20.
http://dx.doi.org/10.1017/S0022112094004350

[40]   Stiassnie, M. (1984) Note on the Modified Nonlinear Schrodinger Equation for Deep Water Wave. Wave Motion, 6, 431-433.
http://dx.doi.org/10.1016/0165-2125(84)90043-X

[41]   El-Wakil, S.A., Abdou, M.A. and Hendi, A. (2008) New Periodic Wave Solutions via Exp-Function Method. Physics Letters A, 372, 830-840.
http://dx.doi.org/10.1016/j.physleta.2007.08.033

[42]   Demiray, H. (2009) Variable Coefficient Modified KdV Equation in Fluid-Filled Elastic Tubes with Stenosis: Solitary Waves. Chaos Solitons Fractals, 42, 358-364.
http://dx.doi.org/10.1016/j.chaos.2008.12.014

[43]   Zhang, S., Dong, L., Ba, J.M. and Sun, Y.N. (2010) The (G’/G)-Expansion Method for a Discrete Nonlinear Schrödinger Equation. Pramana, 74, 207-218.

[44]   Arora, R. and Yadav, S. (2012) The (G’/G)-Expansion Method for Traveling Wave Solutions of Burgers’ Kdv and Generalization of Huxley Equations. American Journal of Computational and Applied Mathematics, 2, 119-123.
http://dx.doi.org/10.5923/j.ajcam.20120203.09

[45]   Li, L.X. and Wand, M.L. (2009) The (G’/G)-Expansion Method and Travelling Wave Solutions for a Higher-Order Nonlinear Schrödinger Equation. Applied Mathematics and Computation, 208, 440-445.
http://dx.doi.org/10.1016/j.amc.2008.12.005

[46]   Kheiri, H., Moghaddam, M.R. and Vafaei, V. (2011) Application of the (G’/G)-Expansion Method for the Burgers, Burgers-Huxley and Modified Burgers-Kdv Equations. Pramana, 76, 831-842.

[47]   Hacinliyan, I. and Erbay, S. (2004) Coupled Quintic Nonlinear Schrodinger Equations in a Generalized Elastic Solid. Journal of Physics A: Mathematical and General, 37, 9387-9401

[48]   Müller, P., Garrett, C. and Osborne, A. (2005) Meeting Report: Rogue Waves—The Fourteenth ’Aha Huliko’a Hawaiian Winter Workshop. Oceanography, 18, 66-75.
http://dx.doi.org/10.5670/oceanog.2005.30

[49]   Energy Endurance. www.lethist.laure.net/Scelerates.htm

 
 
Top