PP  Vol.5 No.11 , October 2014
Psychopharmacological Profile of Hydroalcoholic Extract and P-Hydroxybenzoic Acid Obtained from Bourreria huanita (Boraginaceae) in Mice
Abstract: Bourreria huanita (Lex.) Hemsl. (Boraginaceae) is a very rare and highly appreciated tree in Mesoamerica for its medicinal properties and beauty. It grows in a region extending from central Mexico to Costa Rica. Ethnobotanical surveys have shown that the infusion of dried flowers is popularly used as a tranquilizer to cure several diseases. In the present study we report the isolation of p-hydroxybenzoic acid (pHBZ) obtained from the hydroalcoholic extract (HE) of B. huanita, and the effect of both, the extract and the compound on the central nervous system in mice. HE of B. huanita (100, 150, 300 mg/kg) and pHBZ (10 mg/kg) were orally administered to mice and 1 h later, behavioral tests were performed. The effects of HE and pHBZ were tested by pentylenetetrazole (PTZ) and strychnine (STR) induced seizures, pentobarbital-induced hypnosis, the forced swimming test and the tail suspension test, the elevated plus maze, apomorphine-induced stereotypy and the climbing test, the inhibitory avoidance test and the open-field test. B. huanita extract produced hypnotic, anxiolytic and antidepressant effects in animals, with no change in motor performance. On the other hand, the extract did not reduce PTZ and STR-induced convulsions, apomorphine-induced stereotypy or climbing. Moreover, no changes were observed in the animals’ memory. The compound pHBZ was effective only in the depression tests. The results obtained in the present study suggest that B. huanita exhibited sedative, antidepressant and hypnotic activities in mice, and that the antidepressant activity may be mediated by an isolated compound identified as pHBZ.
Cite this paper: Holzmann, I. , Cattani, D. , Corso, M. , Perondi, D. , Zanella, S. , Burger, C. , Júnior, L. , Filho, V. , Cruz, S. , Torres, M. , Cáceres, A. and Souza, M. (2014) Psychopharmacological Profile of Hydroalcoholic Extract and P-Hydroxybenzoic Acid Obtained from Bourreria huanita (Boraginaceae) in Mice. Pharmacology & Pharmacy, 5, 983-995. doi: 10.4236/pp.2014.511110.

[1]   Standley, P.C. and Williams, L.O. (1965) Flora of Guatemala. Fieldiana: Botany, 114, 24-29.

[2]   McNeil, C.L. (2003) Paleobotanical Research at Copán, Honduras. Foundation for the Advancement of Mesoamerican Studies, Inc. (FAMSI), Crystal River, Fla.

[3]   Delgado, J.F., Torres, M.F., Pérez, P.P., Sánchez, R. and Rodríguez, O. (2009) The Two Worlds of Hermano Pedro (Tenerife-Guatemala). Litografía Romero, S.L., Tenerife, Islas Canarias.

[4]   De la Cruz, M. (1964) Libellus de Medicina libus Indorum Herbis. Instituto Mexicano del Seguro Social, México.

[5]   Torres, M.F. (2009) El Tesoro de El Calvario Patrimonio de La Antigua Guatemala. Fundación G&T Continental, Guatemala.

[6]   Orellana, S.L. (1989) Indian Medicine in Highland Guatemala: The Pre-Hispanic and Colonial Periods. Ethnohistory, 36, 338.

[7]   Svetaz, L., Zuljan, F., Derita, M., Petenatti, E., Tamayo, G., Cáceres, A., Cechinel-Filho, V., Giménez, A., Pinzón, R., Zacchino, S.A. and Gupta, M. (2010) Value of the Ethnomedical Information for the Discovery of Plants with Antifungal Properties. A Survey among Seven Latin American Countries. Journal of Ethnopharmacology, 127, 137-158.

[8]   Gaitán, I., Paz, A.M., Zacchino, S.A., Tamayo, G., Giménez, A., Pinzón, R., Cáceres, A. and Gupta, M.P. (2011) Subcutaneous Antifungal Screening of Latin American Plant Extracts against Sporothrix schenkii and Fonsecaea pedrosoi. Pharmaceutical Biology, 49, 907-919.

[9]   Calderon, A., Romero, L.I., Ortega-Barría, E., Solis, P.N., Zacchino, S., Gimenez, A., Pinzon, R., Caceres, A., Tamayo, G., Guerra, C., Espinosa, A., Correa, M. and Gupta, M.P. (2010) Screening of Latin American Plants for Antiparasitic Activities against Malaria, Chagas Disease, and Leishmaniasis. Pharmaceutical Biology, 48, 545-553.

[10]   Cruz, S.M., García, E.P., Letrán, H., Gaitán, I., Medinilla, B., Paredes, M.E., Orozco, R., Samayoa, M.C. and Cáceres, A. (2008) Caracterización química y evaluación de la actividad biológica de Bourreria huanita (Llave & Lex.) Hemsl. (Esquisuchil) y Litsea guatemalensis Mez. (Laurel). Informe Final del Proyecto, Dirección General de Investigación, Universidad de San Carlos, Guatemala.

[11]   Sharapin, N. (2000) Fundamentos de Tecnología de Productos Fitoterapéuticos. Convenio Andres Bello y CYTED, Bogotá.

[12]   Peungvicha, P., Temsiririrkkul, R., Praisan, J.K., Tezuca, Y., Kadota, S., Thirawarapan, S.S. and Watanabe, H. (1998) 4-Hydroxybenzoic Acid: A Hypoglycemic Constituent of Aqueous Extract of Pandanus odorus Roots. Journal of Ethnopharmacology, 62, 79-84.

[13]   Tolardo, R., Zetterman, L., Bittencourtt, D.R., Mora, T.C., de Oliveira, F.L., Biavatti, M.W., Amoah, S.K., Bürger, C. and de Souza, M.M. (2010) Evaluation of Behavioral and Pharmacological Effects of Hedyosmum brasiliense and Isolated Sesquiterpene Lactones in Rodents. Journal of Ethnopharmacology, 128, 63-70.

[14]   O’Neill, M.F. and Conway, M.W. (2001) Role of 5-HT1A and 5-HT1B Receptors in the Mediation of Behavior in the Forced Swim Test in Mice. Neuropsychopharmacology, 24, 391-398.

[15]   Jesse, C.R., Wilhelm, E.A., Bortolatto, C.F. and Nogueira, C.W. (2010) Evidence for the Involvement of the Serotonergic 5-HT2A/C and 5-HT3 Receptors in the Antidepressant-Like Effect Caused by Oral Administration of Bis Selenide in Mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34, 294-302.

[16]   Zomkowski, A.D.E., Rosa, A.O., Lin, J., Santos, A.R., Ca-lixto, J.B. and Rodrigues, A.L.S. (2004) Evidence for Serotonin Receptor Subtypes Involvement in Agmatine Antide-pressant Like-Effect in the Mouse Forced Swimming Test. Brain Research, 1023, 253-263.

[17]   Carlini, E.A., Contar, J.D.P., Silva-Filho, A.R., da Silvei-ra-Filho, N.G., Frochtengarten, M.L. and Bueno, O.F. (1986) Pharmacology of Lemongrass (Cymbopogon citratus Stapf.). I. Effects of Teas Prepared from the Leaves on Laboratory Animals. Journal of Ethnopharmacology, 17, 37-64.

[18]   Pellow, S. and File, S.E. (1987) New Adaptations in Plus-Maze Labyrinth. Pharmacology Biochemistry and Behavior, 24, 520-525.

[19]   De Souza, M.M., Bella-Cruz, A., Schumacher, M.B., Kreuger, M.R.O., Freitas, R.A. and Cruz, R.C.B. (2003) Métodos de Avaliação de Atividade Biológica de Produtos Naturais e Sintéticos. In: Bresolin, T.M.B. and Cechinel Filho, V. Eds., Ciências Farmacêuticas: Contribuição ao desenvolvimento de Novos Fármacos e Medicamentos, Univali, Itajaí, 109-168.

[20]   Izquierdo, I., Cammarota, M., Medina, J.H. and Bevilaqua, L.R. (2004) Pharmacological Findings on the Biochemical Bases of Memory Processes: A General View. Neural Plasticity, 11, 159-189.

[21]   Brocardo, P.S., Budni, J., Kaster, M.P., Santos, A.R.S. and Rodrigues, A.L.S. (2008) Folic Acid Administration Produces an Antidepressant-Like Effect in Mice: Evidence for the Involvement of the Serotonergic and Noradrenergic Systems. Neuropharmacology, 54, 464-473.

[22]   Holzmann, I., Filho, V.C., Mora, T.C., Cáceres, A., Martínez, J.V., Cruz, S.M. and Souza, M.M. (2011) Evaluation of Behavioral and Pharmacological Effects of Hydroalcoholic Extract of Valeriana prionophylla Standl. from Guatemala. Evidence-Based Complementary and Alternative Medicine, 2011, Article ID: 312320.

[23]   Porsolt, R.D., Le Pinchon, M., Jalfre, M. and Chatterjee, S.S. (1977) Depression: A New Animal Model Sensitive to Antidepressant Treatments. Nature, 266, 730-732.

[24]   Steru, L., Chermat, R., Thierry, B. and Simon, P. (1985) The Tail Suspension Test: A New Method for Screening Anti-depressants in Mice. Psychopharmacology, 85, 367-370.

[25]   Chinen, C.C., Faria, R.R. and Frussa-Filho, R. (2006) Characterization of the Rapid-Onset Type of Behavioral Sensitization to Amphetamine in Mice: Role of Drug-Environment Conditioning. Neuropsychopharmacology, 31, 151-159.

[26]   Marcais, J., Protais, P., Costentin, J. and Schwartz, J.C. (1978) A Gradual Score to Evaluate the Climbing Behaviour Elicited by Apomorphine in Mice. Psychopharmacology, 56, 233-234.

[27]   Protais, P., Costentin, J. and Schwartz, J.C. (1976) Climbing Behaviour Induced by Apomorphine in Mice: A Simple Test for the Study of Dopamine Receptors in Striatum. Psychopharmacology, 50, 1-6.

[28]   Petty, F. (1995) GABA and Mood Disorders: A Brief Review and Hypothesis. Journal of Affective Disorders, 34, 275-281.

[29]   Jackson, M.J. and Turkington, D. (2005) Depression and Anxiety in Epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 76, 45-47.

[30]   Rodgers, R.J. and Johnson, N.J.T. (1995) Factor Analysis of Spatiotemporal and Ethological Measures in the Murine Elevated Plus-Maze Test of Anxiety. Pharmacology, Biochemistry and Behavior, 52, 297-303.

[31]   Pellow, S. and File, S.E. (1985) The Effects of Putative Anxiogenic Compounds (FG 7142, CGS 8216 and Ro 15-1788) on the Rat Corticosterone Response. Physiology and Behavior, 35, 587-590.

[32]   Treit, D. and Fundytus, M. (1988) Thigmotaxis as a Test for Anxiolytic Activity in Rats. Pharmacology, Biochemistry and Behavior, 31, 959-962.

[33]   Carobrez, A.P. and Bertoglio, L. (2005) Ethological and Temporal Analyses of Anxiety-Like Behavior: The Elevated Plus-Maze Model 20 Years on. Neuroscience and Biobehavioral Reviews, 29, 1193-1205.

[34]   Uzun, S., Kozumplik, O. and Jakovljevic, M. (2010) P03-348 Agitation and Insomnia during Therapy with Alprazolam: Case Report. European Psychiatry, 25, 963.

[35]   Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Da Silva, W.C., Medina, J.H. and Cammarota, M. (2006) The Connection between the Hippocampal and the Striatal Memory Systems of the Brain: A Review of Recent Findings. Neurotoxicity Research, 10, 113-121.

[36]   Cryan, J.F., Mombereau, C. and Vassout, A. (2005) The Tail Suspension Test as a Model for Assessing Antidepressant Activity: Review of Pharmacological and Genetic Studies in Mice. Neuroscience and Biobehavioral Reviews, 29, 571-625.

[37]   Overstreet, D.H. (2012) Modeling Depression in Animal Models. Methods in Molecular Biology, 829, 125-144.

[38]   Schmauss, M. (2012) Fortschritte der Medizin. Vol. 19, 69-72.

[39]   Baldessarini, R.J. (2001) Drugs and the Treatment of Psychiatry and Mania. In: Hardman, J.G. and Limbird, I.E., Eds., Goodman and Gilman, the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 175-191.

[40]   Stone, J.M., Raffin, M., Morrison, P. and McGuire, P.K. (2010) The Biological Basis of Antipsychotic Response in Schizophrenia. Journal of Psychopharmacology, 24, 953-964.

[41]   Pereira, M., Siba, I.P., Chioca, L.R., Correia, D., Vital, M.A.B.F., Pizzolatti, M.G., Santos, A.R.S. and Andreatini, R. (2011) Myricitrin, a Nitric Oxide and Protein Kinase C Inhibitor, Exerts Antipsychotic-Like Effects in Animal Models. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 1636-1644.

[42]   Agid, O., Mamo, D., Ginovart, N., Vitcu, I., Wilson, A.A., Zipursky, R.B., et al. (2007) Striatal vs Extrastriatal Dopamine D2 Receptors in Antipsychotic Response: A Double-Blind PET Study in Schizophrenia. Neuropsychopharmacology, 32, 1209-1215.

[43]   Porsolt, R.D., Moser, P.C. and Castagné, V. (2010) Behavioral Indices in Antipsychotic Drug Discovery. Journal of Pharmacology and Experimental Therapeutic, 333, 632-638.