AD  Vol.2 No.4 , October 2014
GeoArchaeology Web 2.0: Geospatial Information Services Facilitate New Concepts of Web-Based Data Visualization Strategies in Archaeology—Two Case Studies from Surveys in Sudan (Wadi) and Turkey (Doliche)
Abstract: The surveying, analysis and documentation of ancient infrastructures or settlement sites are often carried out by the additional use of geoinformatic software and tools, i.e. embedded in geoinformation systems (GIS). Since these GIS-methods are usually adjusted to the local use case, the spatial dimensions, coordinates, map projections and file formats differ significantly between individual survey sites and/or archaeological focus. Consequently, the interdisciplinary digital fusion and interactive analysis of such regional varying geodata by collaborating teams of archaeologists are often a quite cumbersome procedure. Alternatively, new web-based GIS online technologies offer a unique opportunity to quickly visualize thematic maps, location metadata and find details of archaeological objects in a standardized way, also allow the upload of individual geodata from any local client via the internet. Hence individual scientists can contribute information to the documentation and spatial relation of these objects not only by mail or data attachments (GeoArchaeology Web 1.0) but also by directly integrating their standardized geodata using an online webserver-portal (GeoArchaeology Web 2.0). The aim of this study is to assess the potential use of the open source GeoServer software and related web-applications to generate a new archaeological perspective on geospatial data with different scales, resolutions, thematic focus and information depths. Therefore, the two case studies range from a small scale, large regional scope (Sudan) to scales of local conventional excavations (Turkey). Both surveys provided various datasets (i.e. base maps, UAS aerial images, terrain models, photographs, attribute and GPS data, field observations, etc.) which were combined in an interactive web-based geoportal with global range and minimum scale limitations since the service was based on a WGS84 map projection. The embedded archaeological data follows accepted Open Geospatial Consortium (OGC) standards which are available in every GIS. This particular archaeological data infrastructure enables not only the publication and visualization of archaeological datasets in a web-based geoportal but also the interactive geospatial interpretation and data extension of the whole available data pool “by third party users” in order to enrich and promote further scientific discussion on archaeological issues of the respective sites.
Cite this paper: Prinz, T. , Walter, S. , Wieghardt, A. , Karberg, T. and Schreiber, T. (2014) GeoArchaeology Web 2.0: Geospatial Information Services Facilitate New Concepts of Web-Based Data Visualization Strategies in Archaeology—Two Case Studies from Surveys in Sudan (Wadi) and Turkey (Doliche). Archaeological Discovery, 2, 91-106. doi: 10.4236/ad.2014.24011.

[1]   Autodesk (2013). AutoCAD.

[2]   Blömer, M. (2012). Iuppiter Dolichenus zwischen lokalem Kult und reichsweiter Verehrung. In: M. Blömer, & E. Winter (Eds.), Iuppiter Dolichenus. Vom Lokalkult zur Reichsreligion. Orientalische Religionen in der Antike 8 (pp. 39-98). Tübingen: Mohr Siebeck Press.

[3]   Chapman, H. (2006). Landscape Archaeology and GIS. London: The History Press Ltd., 191 p.

[4]   DAI (2013). Deutsches Archäologisches Institut. Berlin: CISAR.

[5]   Ergeç, R. (2003). Die Nekropolen und Gräber in der südlichen Kommagene, Asia Minor Studien 44. Bonn: Habelt Verlag.

[6]   ESRI (2013). ESRI—Environmental Systems Research Institute.

[7]   ESRI (2014). ESRI—Environmental Systems Research Institute.

[8]   GeoExt (2012). GeoExt Main Page.

[9]   GeoServer (2013). GeoServer Main Page.

[10]   Göldner, R. (2007). Denkmale und mehr—Archäologische Geodaten in Sachsen.

[11]   Göldner, R. (2012). Archäologie in Sachsen: Dokumentations-und Informationssystem Archäologie (DIA).

[12]   GoogleEarth (2013). Google.

[13]   Hacigüzeller, K., & Prinz, T. (2014). 3D-Oberflächenerfassung und Orthophotogenerierung mittels eines UAS-basierten Stereokamerasystems am Beispiel der archäologischen Grabungsstätte Doliche (Türkei). Münster: Wichmann Verlag, 21-29.

[14]   Hacigüzeller, P. (2012). GIS, Critique, Representation and Beyond. Journal of Social Archaeology, 12, 245-263.

[15]   Hazzard, E. (2011). Open Layers 2.10 Beginners Guide. Birmingham: Packt Publishing Ltd., 372 p.

[16]   Herring, J. R. (2010). OpenGIS® Implementation Standard for Geographic Information. Simple Feature Access.

[17]   INSPIRE (2013). Infrastructure for Spatial Information in the European Community. European Commission.

[18]   ISO/TC211 19118 (2005). Geographic Information—Encoding. Norm. How ISO Develops Standards.

[19]   Koch, S. (2011). JavaScript Einführung, Programmierung und Referenz. Heidelberg: Dpunkt.verlag GmbH, 443 p.

[20]   Lohwasser, A. (2012). Aspekte der napatanischen Gesellschaft. Archäologisches Inventar und funeräre Praxis im Friedhof von Sanam. Perspektiven einer kulturhistorischen Interpretation; Contributions to the Archaeology of Egypt, Nubia and the Levant I, Wien: Verlag der Österreichischen Akademie der Wissenschaften.

[21]   Lohwasser, A. (2013). Tracks in the Bayuda Desert. The Project “Wadi Abu Dom Itinerary” (W.A.D.I.). In F. Förster, & H. Riemer (Eds.), Desert Road Archaeology (pp. 425-435). Köln: Africa Praehistorica 27.

[22]   NASA (2013). Landsat Image Archives.

[23]   Nieswandt, H. H., & Salzmann, D. (2014). Zwischen Hellespont und Nemrud Da&gcirc. 80 Jahre Münsteraner Forschung in der Türkei. Münster: Verüffentlichungen des Archäologischen Museums der Westfälischen Wilhelms-Universität 4.

[24]   OGC (2013). Open Geospatial Consortium (OGC).

[25]   OpenLayers (2012). OpenLayers Main Page.

[26]   OpenStreetMap (2013). OSM.

[27]   Paner, H., & Pudlo, A. (2010). The Bayuda Project. The First Season. 2009. Gdansk Archaeological Museum and Heritage Protection Fund African Reports 7, Gdansk, 117-130.

[28]   PostGIS (2012). PostGIS Main Page.

[29]   PostgreSQL (2012). PostGIS Main Page.

[30]   Prinz, T., Krüger, K., & Lasar, B. (2010). High-Resolution Remote Sensing and GIS Techniques for Geobase Data Supporting Archaeological Surveys: A Case Study from Ancient Doliche, Southeast Turkey. Geoarchaeology, 23, 355-374.

[31]   Röttger, C. (2011). An OGC-Compliant Spatial Data Infrastructure Approach Using Free GIS Software Components Based on a Use Case in the Mekong Delta, Vietnam. Diploma Thesis, Münster: Institute for Geoinformatics (ifgi), University of Münster, 85 p.

[32]   Trimble (2013). Trimple Mapping and GIS.

[33]   W3C (2012). HTML5—A Vocabulary and Associated APIs for HTML and XHTML.

[34]   Wagner, J. (1982). Neue Denkmäler aus Doliche. Ergebnisse einer archäologischen Landesaufnahme im Ursprungsgebiet des Iupiter Dolichenus. Bonn: Bonner Jahrbücher 182, 133-166.

[35]   Wagner, J. (2012). Gottkönige am Euphrat. Neue Ausgrabungen und Forschungen in Kommagene. Mainz: Verlag Philipp von Zabern, 145 p.

[36]   Warrlich, R. (2012). Entwicklung eines prototypischen Webservices zur Visualisierung archäologischer Befunde am Beispiel des Projektes Wadi Abu Dom Itinerary (Sudan). B.Sc. Thesis, Münster: Institute for Geoinformatics (ifgi), University of Münster.

[37]   Wheatley, D., & Gillings, M. (2002). Spatial Technology and Archaeology—The Arcaeological Application of GIS. London: Taylor & Francis Ltd., 231 p.

[38]   Winter, E. (2011). Von Kummuh nach Telouch. Archäologische und historische Untersuchungen in Kommagene. Dolichener und Kommagenische Forschungen IV. Bonn: Habelt Verlag, Asia Minor Studien 64.

[39]   Winter, E. (2014). Kult und Herrschaft am Euphrat. Dolichener und Kommagenische Forschungen VI. Bonn: Habelt Verlag, Asia Minor Studien 73.