OJE  Vol.4 No.13 , October 2014
Satellite Images Applied to Assess the Influence of Amazon River Seasonal Dynamic on the Floodplain Lake Morphology
Abstract: The objective of this study is to assess the influence of the Amazon River seasonal dynamic on floodplain lake morphology. The study area includes the Amazon River floodplain reach encompassed by the Madeira and Tapajós River confluences. Products from the Global Rain Forest Mapping (GRFM) and Moderate Resolution Imaging Spectroradiometer (MODIS) were used to derive variables such as lake size, shape and number. The main steps in the research were: data base implementation, legend definition, image processing (merge, segmentation, classification and edition), morphological mapping and quantitative assessment. Four classes of lacustrine morphology were defined in this study: circular/elliptical, elongated, composite, and dendritic. The result showed that 1) the lake class increased 18.38% from the low- to high-water period; 2) there was a reduction in the total number of lakes from low to high water; 3) the most common lake type was the circular/elliptical; and 4) better results were obtained integrating SAR and optical sensors.
Cite this paper: França, A. , Florenzano, T. and Novo, E. (2014) Satellite Images Applied to Assess the Influence of Amazon River Seasonal Dynamic on the Floodplain Lake Morphology. Open Journal of Ecology, 4, 820-831. doi: 10.4236/oje.2014.413070.

[1]   Mertes, L.A.K., Dunne T. and Martinelli, L.A. (1996) Channel Floodplain Geomorphology along the Solimoes-Amazon River, Brazil. Geological Society of America Bulletin, 108, 1089-1107.<1089:CFGATS>2.3.CO;2

[2]   Campbell Jr., K.E., Frailey, C.D. and Pittman, L.R. (2006) The Pan-Amazonian Ucayali Peneplain, Late Neogene Sedimentation in Amazonia, and the Birth of the Modern Amazon River System. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 166-219.

[3]   Latrubesse, E.M. and Franzinelli, E. (2002) The Holocene Alluvial Plain of the Middle Amazon River, Brazil. Geomorphology, 44, 241-257.

[4]   Latrubesse, E.M. and Franzinelli, E. (2005) The Late Quaternary Evolution of the Negro River, Amazon, Brazil: Implications for Island and Floodplain Formation in Large Anabranching Tropical Systems. Geomorphology, 70, 372-397.

[5]   Franzinelli, E. and Igreja, H.L.S. (2002) Modern Sedimentation in the Lower Negro River, Amazonas State, Brazil. Geomorphology, 44, 259-271.

[6]   Franzinelli, E. and Igreja, H.L.S. (1990) Utilizacao de Sensoriamento Remoto na interpretacao da Area do baixo Rio Negro e Grande Manaus. Proceedingsof the 6th Brazilian Remote Sensing Symposium, 3, 641-648.

[7]   Sternberg, H.O. (1950) Vales tectonicos na planície amazonica? Revista Brasileira de Geografia, 12, 513-533.

[8]   Forsberg, B.R., Hashimoto, Y., Roseqvist, A. and Miranda, F.P. (2000) Tectonic Falt Control of Wetland Distributions in the Central Amazon Revealed by JERS-1 Radar Imagery. Quaternary International, 72, 61-66.

[9]   Almeida Filho, R. and Miranda, F.P. (2007) Mega Capture of the Rio Negro and Formation of the Anavilhanas Archipelago, Central Amazonia, Brazil: Evidences in an SRTM Digital Elevation Model. Remote Sensing of Environment, 110, 387-392.

[10]   Franzinelli, E. and Latrubesse, E. (1993) Neotectonic in the Central Part of the Amazon Basin. INQUA-Neotecton, 16, 10-13.

[11]   Sternberg, H. (1987) Aggravation of Floods in the Amazon River as a Consequence of Deforestation. Geografiska Annaler, 69A, 201-219.

[12]   Sippel, S.J., Hamilton, S.K. and Melack, J.M. (1992) Inundation Area and Morphometry of Lakes on the Amazon River Floodplain. Archiv für Hydrobiologie, 123, 385-400.

[13]   Mertes, L.A.K., Daniel, D.L., Melack, J.M., Nelson, B., Martinelli, L.A. and Forsberg, B.R. (1995) Spatial Patterns of Hydrology, Geomorphology and Vegetation on the Floodplain of the Amazon River in Brazil from a Remote Sensing Perspective. Geomorphology, 13, 215-232.

[14]   Melack, J.M. (1984) Amazon Floodplain Lakes: Shape, Fetch and Stratification. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 22, 1278-1282.

[15]   Melack, J.M., Hess, L.L. and Sippel, S. (1994) Remote Sensing of Lakes and Floodplains in the Amazon Basin. Remote Sensing Review, 10, 127-142.

[16]   Arraut, E.M., Rudorff, C.M., Barbosa, C.C.F., Carvalho, J.C., Filho, W.P. and Novo, E.M.L.M. (2005) Estudo do comportamento espectral da Clorofila e dos Sólidos em Suspensao nas águas do Lago Grande de Curuai (Pará), na época da seca, através de técnicas de Espectroscopia de Campo. Proceedings of XII Simpósio Brasileiro de Sen-soriamento Remoto, Goiania, 16-21 April 2005, 2447-2454.

[17]   Lewis, A.J. and Henderson, F.M. (1998) Radar Fundamentals: The Geoscience Perspective. In: Hendesron, F.M. and Lewis, A.J., Eds., Principles and Application of Imaging Radar: Manual of Remote Sensing, 3th Edition, Hendesron and Lewis, New York, 567-629.

[18]   Gonzaga, E.G., Goncalves, E.T.T. and Coutinho, L.E.C. (2000) Petroleum Geology of Amazon Basin, Brazil: Modelin of Hydrocarbon Generation and Migration. In: Mello, M.R. and Katz, B.J., Eds., Petroleum System of South America Margins, Vol. 73, 159-178.

[19]   Tassinari, C.C.G. and Macambira, M.J.B. (1999) Geochronological Provinces of Amazonian Craton. Episodes, 22, 174-182.

[20]   Assumpcao, M. and Suárez, G. (1988) Source Mechanisms of Moderate-Size Earthquakes and Stress Orientation in Mid-Plate South America. Geophysical Journal, 92, 253-267.

[21]   Iriondo, M. and Suguio, K. (1981) Neotectonic of the Amazon Plain. Bulletin of the INQUA Neotectonic Commission, 4, 72-78.

[22]   Silva, G.G. (1976) Folha SA-21 Santarém. Projeto RADAM, 10, 21-196..

[23]   Sioli, H. (1984) Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana, 1, 74-83.

[24]   Hess, L.L., Melack, J.M., Novo, E.M.L.M., Barbosa, C.C.F. and Gastil, M. (2003) Dual-Season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin. Remote Sensing of Environment, 87, 404-428.

[25]   Rosenqvist, A., Shimada, M., Chapman, B. and Freeman, A. (2000) The Global Rain Forest Mapping Project: A Review. International Journal of Remote Sensing, 23, 1201-1234.

[26]   Costa, M. (2000) Net Primary Productivity of Aquatic Vegetation of the Amazon Floodplain: A Multi-SAR Satellite Approach. Ph.D. Thesis, University of Victoria, Victoria.

[27]   Barbosa, C., Hess, L., Melack, J. and Novo, E.M.L.M. (2000) Mapping Amazon Basin Wetlands through Region Growing Segmentation and Segmented-Based Classification JERS-1 Data. Proceedings of IX Simposio Latino Americano de Percepcion Remota y Sistemas de Informacion Espacial, Puerto Iguazú, 6-10 November 2000, 1165-1176.

[28]   Bins, L.S., Fonseca, L.M.G., Erthal, G.J. and Mitsuo II, F. (1996) Satellite Imagery Segmentation: A Region Growing Approach. Proceedings of VII Simposio Brasileiro de Sensoriamento Remoto, Salvador, 14-19 May 1996, 677-680.

[29]   Hutchinson, G.E. (1951) A Treatise on Limnology. John Wiley & Sons, London.

[30]   Straskraba, M. and Gnauck, A. (1982) Aquatische Okosysteme: Modellierung und Simulation. Gustav Fischer Verlag, Stuttgart.

[31]   Sperling, E.V. (1999) Morfologia de lagos e represas. DesaUFMG, Belo Horizonte.

[32]   Franca, A.M.S. (2005) Aplicacao de Sensoriamento Remoto no estudo da influência da dinamica sazonal do rio Amazonas sobre a morfologia dos sistemas lacustres. Master’s Thesis, INPE, Sao José dos Campos.

[33]   Junk, W.J. (1983) As águas da Bacia Amazonica. In: Salati, E., Junk, W.J., Shubart, H.O.R. and Oliveira, A.E., Eds., Amazonia: desenvolvimento, integracao e ecologia, Brasiliense, Sao Paulo, 45-100.

[34]   Latrubesse, E.M., Stevaux, J.C. and Sinhá, R. (2005) Tropical Rivers. Geomorphology, 70, 187-206.

[35]   Junk, W.J. (1997) The Central Amazon Floodplain—Ecology of a Pulsing System. Springer, New York, 525.

[36]   Meade, R.H., Dunne, T., Richey, J.E., Santos, U.M. and Salati, E. (1985) Storage and Remobilization of Suspended Sediment in the Lower Amazon River of Brazil. Science, 228, 488-490.

[37]   Baker, V.R. (1986) Fluvial Landforms. In: Short, N.M. and Blair Jr., R.W., Eds., Geomorphology from Space, NASA, Washington, 255-315.