Back
 OJE  Vol.4 No.13 , October 2014
Estimates for Carbon Stocks in Soil under Humid Grassland Areas in the Federal District of Brazil
Abstract: The soils that lay below humid ecosystems are characterized as being significant holders of carbon. Because of the great susceptibility of this type of environment to anthropic changes, expressive quantities of carbon stored in the soil can be released into the atmosphere. In the Cerrado biome (Brazil), only a few types of vegetation have had carbon storage levels in their soil estimated. The main purpose of this study was to obtain basic quantitative parameters for carbon storage and to identify the general aspects of soil in regions where there exists Humid Grasslands (Campo Limpo úmido), a kind of humid area phytophysiognomy found in the Cerrado. We selected 6 regions of the Federal District with this kind of vegetation formation, characterized by low anthropic impact and located either in the interior or in the proximity of specially protected areas. In each one of the sampled regions, we marked a transect with 4 equidistant points and collected material at 7 different levels of depth: 0 - 5, 5 - 10, 10 - 20, 20 - 30, 30 - 40, 40 - 50 and 50 - 60 cm. We obtained 168 samples, with 84 related to Humid Grassland areas in gleysols and 84 samples related to areas in plinthosols—types of soil dominant in this environment. We determined the texture, bulk density and concentration of nitrogen and carbon at each depth. The average concentration of carbon for Humid Grassland areas was 55.19 g.kg-1, with an average of 61.65 g.kg-1 for Gleysols and 48.73 g.kg-1 for Plinthosols. The soil samples displayed distinct textural differences between gleysols and plinthosols. There were no significant differences in soil density (0.75 kg.dm-3 for Gleysols and 0.72 kg.dm-3 for Plinthosols). The average concentration of nitrogen was 20.66 g.kg-1, with 23.98 g.kg-1 for Gleysols and 17.34 g.kg-1 for Plinthosols. The average carbon storage for Humid Grassland areas, down to 60 cm deep, was 244.17 mg C ha-1 and the total estimated stock for these areas in the Federal District was 206.71 Gg.C. In general, the samples obtained in gleysols showed a carbon content and nitrogen level superior to those in plinthosols, although a greater sampling effort is needed to confirm the differences observed. The density values of stored carbon in the soil beneath Humid Grassland areas proved to be superior to those values observed for other types of vegetation typical for the Cerrado environment.
Cite this paper: França, A. , Paiva, R. , Sano, E. and Carvalho, A. (2014) Estimates for Carbon Stocks in Soil under Humid Grassland Areas in the Federal District of Brazil. Open Journal of Ecology, 4, 777-787. doi: 10.4236/oje.2014.413066.
References

[1]   IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, 467-544.

[2]   Lal, R. and Follett, R.F. (2009) Soil Carbon Sequestration and the Greenhouse Effect. Soil Science Society of America, Madison.

[3]   Lal, R. (2004) Soil Carbon Sequestration to Mitigate Climate Change. Geoderma, 123, 1-22.
http://dx.doi.org/10.1016/j.geoderma.2004.01.032

[4]   Smith, K.A.S, Ball, T.B., Conen, F.C., Dobbie, K.E.D., Massheder, J.M., et al. (2003) Exchange of Greenhouse Gases between Soil and Atmosphere: Interactions of Soil Physical Factors and Biological Processes. European Journal of Soil Science, 54, 779-791. http://dx.doi.org/10.1046/j.1351-0754.2003.0567.x

[5]   Coletti, J.Z., Hinz, C., Vogwill, R. and Hipsey, M.R. (2013) Hydrological Controls on Carbon Metabolism in Wetlands. Ecological Modelling, 249, 3-18. http://dx.doi.org/10.1016/j.ecolmodel.2012.07.010

[6]   Neue, H.U., Gaunt, J.L., Wang, Z.P., Becker-Heidmann, P. and Quijano, C. (1997) Carbon in Tropical Wetlands. Geoderma, 1, 163-185. http://dx.doi.org/10.1016/S0016-7061(97)00041-4

[7]   Mitra, S., Wassmann, R. and Vlek, P.L.G. (2005) An Appraisal of Global Wetland Area and Its Organic Carbon Stock. Current Science, 88, 25-35.

[8]   De La Cruz, A.A. (1986) Tropical Wetlands as a Carbonsource. Aquatic Botany, 25, 109-115.
http://dx.doi.org/10.1016/0304-3770(86)90048-3

[9]   IBAMA (2011) Relatorio Técnico de monitoramento do desmatamento no Bioma Cerrado, 2009 a 2010. Relatório Técnico, IBAMA, Brasília. http://siscom.ibama.gov.br/

[10]   IBAMA (2011) Relatorio Técnico de monitoramento do desmatamento no Bioma Cerrado, 2008 a 2009. Relatório Técnico IBAMA, Brasília. http://siscom.ibama.gov.br/

[11]   IBAMA (2009) Relatorio Técnico de monitoramento do desmatamento no Bioma Cerrado, 2002 a 2008: Dados Revisados. Relatório Técnico, IBAMA, Brasília. http://siscom.ibama.gov.br/

[12]   Rocha, G.F., Ferreira, L.G., Ferreira, N.C. and Ferreira, M.E. (2011) Deteccao de desmatamentos no Bioma Cerrado entre 2002 e 2009: Padroes, Tendências e Impactos. Revista Brasileira de Cartografia, 63, 341-349.

[13]   MMA (2011) Plano de Acao para Prevencao e Controle do Desmatamento e das Queimadas-Cerrado. Ministério do Meio Ambiente, Brasília.

[14]   Soares-filho, B., Rajao, R., Macedo, M., Carneiro, A., Costa, W., et al. (2014) Cracking Brazil’s Forest Code. Science, 344, 363-364. http://dx.doi.org/10.1126/science.1246663

[15]   Walter, B.M.T., Carvalho, A.M. and Ribeiro, J.F. (2008) O Conceito de Savana e de seu Componente Cerrado. In: Sano, S.M., Almeida, S.P. and Ribeiro, J.F., Eds., Cerrado: Ecologia e Flora, Embrapa Informacao Tecnológica, Brasília, 19-45.

[16]   Ribeiro, J.F. and Walter, B.M.T. (1998) Fitofisionomias do bioma cerrado. In: Sano, S.M. and Almeida, S.P., Eds., Cerrado: Ambiente e Flora, Embrapa-CPAC, Brasília, 89-166.

[17]   Munhoz, C.B.R. and Felfili, J.M. (2008) Fitossociologia do estrato herbáceo-subarbustivo em campo limpo úmido no Brasil Central. Acta Botanica Brasilica, 22, 905-913. http://dx.doi.org/10.1590/S0102-33062008000400002

[18]   IBGE (2004) Mapa de Biomas do Brasil. IBGE, Brasília. http://www.ibge.gov.br/

[19]   Silva, J.F., Farinas, M.R., Felfili, J.M. and Klink, C.A. (2006) Spatial Heterogeneity, Land Use and Conservation in the Cerrado Region of Brazil. Journal of Biogeography, 33, 536-548. http://dx.doi.org/10.1111/j.1365-2699.2005.01422.x

[20]   Klink, C.A. and Machado, R.B. (2005) Conservation of the Brazilian Cerrado. Conservation Biology, 19, 707-713.
http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x

[21]   Eiten, G. (1972) The Cerrado Vegetation of Brazil. The Botanical Review, 38, 201-327.
http://dx.doi.org/10.1007/BF02859158

[22]   Franna, A.M.S. and Sano, E.E. (2011) Mapeamento de áreas de campo limpo úmido no Distrito Federal a partir de fusao de imagens multiespectrais. Sociedade e Natureza, 2, 197-209.

[23]   Food and Agriculture Organization (2006) World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation And Communication. FAO, Rome.

[24]   Reatto, A., Spera, S.T., Correia, J.R., Martins, S. and Milhomen, A. (1998) Solos de ocorrência em duas áreas sob matas de galeria no Distrito Federal: Aspectos pedológicos, uma abordagem química e físico-hídrica. In: Ribeiro, J.F., Fonseca, C.E.L. and Sousa-Silva, J.C., Eds., Cerrado: Caracterizacao e recuperacao de matas de galeria, Embrapa Cerrados, Brasília, 115-140.

[25]   Embrapa (2006) Sistema Brasileiro de Classificacao de Solos. Embrapa-SPI, Rio de Janeiro.

[26]   Lepsch, I.F. (2002) Formacao e Conservacao Dos Solos. Oficina de Textos, S?o Paulo.

[27]   Oliveira, J.B., Jacomine, P.K.T. and Camargo, M.N. (1992) Classes Gerais de Solos do Brasil. Guia Auxiliar para seu Reconhecimento. FUNEP, Jaboticabal-SP.

[28]   Skjemstad, J. and Baldock, J.A (2007) Total and Organic Carbon. In: Carter, M.E. and Gregorich, E.G. Eds., Soil Sampling and Methods of Analysis, 2nd Edition, Soil Science Society of Canada, Boca Raton, 225-238.

[29]   Bernal, B. and Mitsch, W.J. (2008) A Comparison of Soil Carbon Pools and Profiles in Wetlands in Costa Rica and Ohio. Ecological Engineering, 4, 311-323. http://dx.doi.org/10.1016/j.ecoleng.2008.09.005

[30]   Bianchi, T.S., Allison, M.A., Zhao, J., Li, X., Comeaux, R.S., et al. (2013) Estuarine, Coastal and Shelf Science Historical Reconstruction of Mangrove Expansion in the Gulf of Mexico: Linking Climate Change with Carbon Sequestration in Coastal Wetlands. Estuarine, Coastal and Shelf Science, 119, 7-16.
http://dx.doi.org/10.1016/j.ecss.2012.12.007

[31]   Silva, J.E., Resck, D.V.S., Corazza, E.J. and Vivaldi, L. (2004) Carbon Storage in Clayey Oxisol Cultivated Pastures in the Cerrado Region, Brazil. Agriculture, Ecosystems & Environment, 103, 357-363.
http://dx.doi.org/10.1016/j.agee.2003.12.007

[32]   Lardy, L.C., Brossard, M., Assad, M.L.L. and Laurent, J.Y. (2002) Carbon and Phosphorus Stocks of Clayey Ferralsols in Cerrado Native and Agroecosystems, Brazil. Agriculture, Ecosystems & Environment, 92, 147-158.
http://dx.doi.org/10.1016/S0167-8809(01)00303-6

[33]   Corazza, E.J., Silva, J.E., Resck, D.V.S. and Gomes, A.C. (1999) Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relacao à vegetacao de Cerrado. Revista Brasileira de Ciências do Solo, 23, 425-432.

[34]   Resck, B.S., Resck, D.V.S., Ferreira, E.A.B. and Gomes, A.C. (2008) Estoque de carbono do solo sob diferentes sistemas de manejo na bacia hidrográfica do córrego taquara, Distrito Federal. II Simpósio Internacional Savanas Tropicais, 1-6.

[35]   Silva, L.C.R, Sternberg, L., Haridasan, M., Hoffmann, W.A., Miralles-Wilhelm, F. and Franco, A.C. (2008) Expansion of Gallery Forests into Central Brazilian Savannas. Global Change Biology, 14, 2108-2118.
http://dx.doi.org/10.1111/j.1365-2486.2008.01637.x

[36]   Paiva, A.O. and Faria, G.E. (2007) Evaluation of the Soil Carbon Stock in a cerrado sensu stricto at Federal. Revista Trópica, 1, 59-65.

[37]   Zinn, Y.L., Resck, D.V.S. and Silva, J.E. (2002) Soil Organic Carbon as Affected by Afforestation with Eucalyptus and Pinus in the Cerrado Region of Brazil. Forest Ecologyand Management, 166, 285-294.
http://dx.doi.org/10.1016/S0378-1127(01)00682-X

[38]   Meirelles, M.L., Ferreira, E.A.B. and Franco, A.C. (2006) Dinamica Sazonal do Carbono em Campo úmido do Cerrado. Documentos/Embrapa Cerrados, 164, 32 p.

[39]   Walkley, A. and Black, I.A. (1934) An Examination of the Determining Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.
http://dx.doi.org/10.1097/00010694-193401000-00003

[40]   Batlle-bayer, L., Batjes, N.H. and Bindraban, P.S. (2010) Agriculture, Ecosystems and Environment Changes in Organic Carbon Stocks upon Land Use Conversion in the Brazilian Cerrado: A Review. Agriculture, Ecosystems & Environment, 137, 47-58. http://dx.doi.org/10.1016/j.agee.2010.02.003

[41]   Marchao, R.L., Becquer, T., Brunet, D., Balbino, L.C., Vilela, L., et al. (2009) Carbon and Nitrogen Stocks in a Brazilian Clayey Oxisol: 13-Year Effects of Integrated Crop-Livestock Management Systems. Soil and Tillage Research, 103, 442-450. http://dx.doi.org/10.1016/j.still.2008.11.002

[42]   Balieiro, F.C., Prado, R.B., Coutinho, H.L.C., Benites, V.M., Fidalgo, E.C.C., et al. (2010) Soil Carbon Stocks in Southwest Goiás, Brazilian Cerrado: Land Use Impact and Spatial Distribution. Proceedings of 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, 6 August 2010, 2008-2011.

 
 
Top