MNSMS  Vol.4 No.4 , October 2014
Flow-Optimization to Enhance Gas Quenching Efficiency for Helical Gears Specimen
Abstract: Numerical simulations based on a conjugate heat transfer solver have been carried out to analyze various gas quenching configurations involving a helical gear streamed by an air flow at atmospheric pressure in a gas quenching chamber. In order to optimize the heat transfer coefficient distribution at key positions on the specimen, configurations involving layers of gears and flow ducts comprising single to multiple gears have been simulated and compared to standard batch configurations in gas quenching. Measurements have been performed covering the local heat transfer for single gears and batch of gears. The homogeneity of the heat transfer coefficient is improved when setting up a minimal distance between the gears (batch density) and when introducing flow ducts increasing the blocking grade around the gears. An offset between layers of the batch as well as flow channels around the gears plays a significant role in increasing the intensity and the homogeneity of the heat transfer in gas quenching process.
Cite this paper: Bucquet, T. and Fritsching, U. (2014) Flow-Optimization to Enhance Gas Quenching Efficiency for Helical Gears Specimen. Modeling and Numerical Simulation of Material Science, 4, 143-152. doi: 10.4236/mnsms.2014.44016.

[1]   Clausen, B., Frerichs, F., Kohlhoff, T., Lübben, T., Prinz, C., Rentsch, R., Solter, J., Surm, H., Stobener, D. and Klein, D. (2009) Identification of Process Parameters Affecting Distortion of Disks for Gear Manufacture—Part II: Heating, Carburizing, Quenching. Materialwissenschaft und Werkstofftechnik, 40, 361-367.

[2]   Liscic, B., et al. (2011) Quenching Theory and Technology. Taylor & Francis, London.

[3]   Totten, G.E., Bates, C.E. and Clinton, N.A. (1993) Handbook of Quenchants and Quenching Technology. ASM International, Geauga County.

[4]   Altena, H., Schobesberger, P. and Schrank, F. (2006) Moderne Gas-Aufkohlungstechnik für die Automobilindustrie. Gas, Warme International, 55, 484-489.

[5]   Stark, P. and Fritsching, U. (2011) Modeling and Simulation of Film and Transitional Boiling Processes on a Metallic Cylinder during Quenching. Journal of ASTM International, 8, 61-80.

[6]   Stolar, P., Altena, H., Jurci, P., Klima, F. and Honzik, O. (2001) Distortion of Gear Wheels After Quenching in Gas and Oil. Proceedings of the 8th Seminar of the International Federation for Heat Treatment and Surface Engineering, IFHTSE 2001, Dubrovnik-Cavtat, 12-14 September 2001, 95-102.

[7]   Altena, H., Jurci, P. and Stola, P. (2004) Gas and Oil Quenching Effects on Gear Distortion. Industrial Heating, 71, 45-48.

[8]   Atraszkiewicz, R., Januszewicz, B., Kaczmarek, L., Stachurski, W., Dybowski, K. and Rzepkowski, A. (2012) High Pressure Gas Quenching: Distortion Analysis in Gears after Heat Treatment. Materials Science and Engineering: A, 558, 550-557.

[9]   Schüttenberg, S., Frerichs, F., Hunkel, M., Fritsching, U. and Mayr, P. (2004) Verzugskompensation Mittels Gasabschreckung in Flexiblen Düsenfeldern. HTM Hartereitechnische Mitteilungen, 59, 185-192.

[10]   Schmidt, R.-R. (2013) Zur Thermo-Fluid-Dynamik beim Hochdruckgasabschrecken: Experimentelle und Numerische Analyse der Hochdruckgasabschreckung Metallischer Bauteile zur Steigerung von Prozesshomogenitat und-Intensitat. Doctoraldissertation, Universitat Bremen, Bremen.

[11]   Loser, K., Heuer, V. and Schmitt, G. (2005) Auswahl geeigneter Abschreckparameter für die Gasabschreckung von Bauteilen aus verschiedenen Einsatzstahlen. HTM Hartereitechnische Mitteilungen, 60, 248-254.

[12]   Captec Entreprise (2012) Heat Flux Sensor Series.

[13]   VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2010) VDI Heat Atlas. Springer, Berlin.

[14]   Everett, K.N., Gerner, A. and Durston, D.A. (1983) Seven-Hole Cone Probes for High Angle Flow Measurement Theory and Calibration. AIAA Journal, 21, 992-998.

[15]   Pellegrino, G., Chaffotte, F., Douce, J.F., Denis, S., Bellot, J.P. and Lamesle, P. (2005) Efficient Numerical Simulation Techniques for High Pressure Gas Quenching. Heat Treating: Proceedings of the 23rd Heat Treating Society Conference, Pittsburgh, 25-28 September 2005, 320-328.

[16]   Schmidt, R.R., Fritsching, U. and Lübben, T. (2009) Prozessmoglichkeiten zur gezielten Einstellung des Gasabschreckens. HTM Journal of Heat Treatment and Materials, 64, 351-363.

[17]   Menter, F., Ferreira, J.C., Esch, T., Konno, B. and Germany, A.C. (2003) The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. Proceedings of the International Gas Turbine Congress, Tokyo, 2-7 November 2003.

[18]   Menter, F.R., Kuntz, M. and Langtry, R. (2003) Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence Heat and Mass Transfer, 4, 625-632.

[19]   Mangani, L. and Bianchini, C. (2007) Heat Transfer Applications in Turbomachinery. Proceedings of the OpenFOAM International Conference, London.

[20]   von Starck, A., Mühlbauer, A. and Kramer, C. (2005) Handbook of Thermoprocessing Technologies: Fundamentals, Processes, Components, Safety. Vulkan-Verlag GmbH, Essen.

[21]   Heuer, V., Faron, D.R., Bolton, D., Lifshits, M. and Loser, K. (2013) Distortion Control of Transmission Components by Optimized High Pressure Gas Quenching. Journal of Materials Engineering and Performance, 22, 1833-1838.

[22]   Stratton, P.F. and Ho, D. (2000) Individual Component Gas Quenching. In: 5th ASM Heat Treatment and Surface Engineering Conference in Europe and the 3rd International Conference on Heat Treatment with Atmospheres, Gothenburg, 7-9 June 2000, 367-375.

[23]   Ward-Smith, A.J., Lane, D.L., Reynolds, A.J., Sahin, B. and Shawe, D.J. (1991) Flow Regimes in Wide-Angle Screened Diffusers. International Journal of Mechanical Sciences, 33, 41-54.