[1] Anderson, J.M., A. Rodriguez, and D.T. Chang, Foreign body reaction to biomaterials. Semin Immunol, 2008. 20(2): p. 86-100.
[2] Zaveri, T.D., et al., Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials. 31(11): p. 2999-3007.
[3] Ainslie, K.M., et al., In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A, 2009. 91(3): p. 647-55.
[4] Chen, S., et al., Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials, 2010. 31(13): p. 3479-91.
[5] Ainslie, K.M., et al., Inflammatory Response to Implanted Nanostructured Materials, in Biological Interactions on Materials Surfaces, D.A. Puleo and R. Bizios, Editors. 2009, Springer New York. p. 355-371.
[6] Oh, S., et al., Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A, 2006. 78(1): p. 97-103.
[7] Brammer, K.S., et al., Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Acta Biomater, 2009. 5(8): p. 3215-23.
[8] Bauer, S., et al., Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr Biol (Camb), 2009. 1(8-9): p. 525-32.
[9] Park, J., et al., Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett, 2009. 9(9): p. 3157-64.
[10] Park, J., et al., Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett, 2007. 7(6): p. 1686- 91.
[11] Brammer, K.S., et al., Nanotube surface triggers increased chondrocyte extracellular matrix production. Materials Science & Engineering C-Materials for Biological Applications, 2010. 30(4): p. 518-525.
[12] Oh, S., et al., Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A, 2009. 106(7): p. 2130-5.
[13] Ferraz, N., Hong, J., Matteo, S., Karlsson Ott, M., Nanoporosity of Alumina Surfaces Induces Different Patterns of Activation in Adhering Monocytes/Macrophages. International Journal of Biomaterials, 2010. 2010: p. 8.
[14] Oh, S.H., et al., Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 2005. 26(24): p. 4938-43.
[15] Chamberlain, L.M., et al., Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models. J Biomed Mater Res A, 2009. 88(4): p. 858-71.
[16] Rhoades, E.R. and I.M. Orme, Similar responses by macrophages from young and old mice infected with Mycobacterium tuberculosis. Mech Ageing Dev, 1998. 106(1-2): p. 145-53.
[17] Godek, M.L., et al., Rho GTPase protein expression and activation in murine monocytes/macrophages is not modulated by model biomaterial surfaces in serum-containing in vitro cultures. J Biomater Sci Polym Ed, 2006. 17(10): p. 1141-1158.
[18] Brammer, K.S., et al., Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett, 2008. 8(3): p. 786-93.
[19] Wei, J., et al., Comparison of physical, chemical and cellular responses to nano- and micro-sized calcium silicate/poly(epsilon-caprolactone) bioactive composites. J R Soc Interface, 2008. 5(23): p. 617-30.
[20] Martinez, E., et al., Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat, 2009. 191(1): p. 126-35.
[21] North, R.J., The concept of the activated macrophage. J Immunol, 1978. 121(3): p. 806-9.
[22] Tatefuji, T., et al., Isolation and identification of compounds from Brazilian propolis which enhance macrophage spreading and mobility. Biol Pharm Bull, 1996. 19(7): p. 966-70.
[23] Schutte, R.J., A. Parisi-Amon, and W.M. Reichert, Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res A, 2009. 88(1): p. 128-39.
[24] Suzuki, R., et al., Reactive oxygen species inhibited by titanium oxide coatings. J Biomed Mater Res A, 2003. 66(2): p. 396-402.
[25] Maeda, H. and T. Akaike, Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc), 1998. 63(7): p. 854-65.
[26] Cromheeke, K.M., et al., Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques. Cardiovasc Res, 1999. 43(3): p. 744-54.