JCPT  Vol.4 No.4 , October 2014
Au Nanoparticle Formation from Amorphous Au/Si Multilayer
ABSTRACT
By direct observations of transmission electron microscopy (TEM), irreversible morphological transformations of as-deposited amorphous Au/Si multilayer (a-Au/a-Si) were observed on heating. The well arrayed sequence of the multilayer changed to zigzag layered structure at 478 K (=Tzig). Finally, the zigzag structure transformed to Au nanoparticles at 508 K. The distribution of the Au nanoparticles was random within the thin film. In situ X-ray diffraction during heating can clarify partial crystallization Si (c-Si) in the multilayer at 450 K (= ), which corresponds to metal induced crystallization (MIC) from amorphous Si (a-Si) accompanying by Au diffusion. On further heating, a-Au started to crystallize at around 480 K (=Tc) and gradually grew up to 3.2 nm in radius, although the volume of c-Si was almost constant. Continuous heating caused crystal Au (c-Au) melting into liquid AuSi (l-AuSi) at 600 K (= ), which was lower than bulk eutectic temperature ( ). Due to the AuSi eutectic effect, reversible phase transition between liquid and solid occurred once temperature is larger than . Proportionally to the maximum temperatures at each cycles (673, 873 and 1073 K), both and Au crystallization temperature approaches to . Using a thermodynamic theory of the nanoparticle formation in the eutectic system, the relationship between and the nanoparticle size is explained.

Cite this paper
Aono, M. , Ueda, T. , Abe, H. , Kobayashi, S. and Inaba, K. (2014) Au Nanoparticle Formation from Amorphous Au/Si Multilayer. Journal of Crystallization Process and Technology, 4, 193-205. doi: 10.4236/jcpt.2014.44024.
References
[1]   Hiraki, A. (1983) Low Temperature Reactions at Si-Metal Contacts—From SiO2 Growth Due to Si-Au Reaction to the Mechanism of Silicide Formation. Japanese Journal of Applied Physics, 22, 549-562.
http://dx.doi.org/10.1143/JJAP.22.549

[2]   Ito, T. and Gibson, W.M. (1987) Metal/Silicon Reactions Studied by High Energy Ion Scattering. Japanese Journal of Applied Physics, 26, 841-847. http://dx.doi.org/10.1143/JJAP.26.841

[3]   Her, Y.-C. and Chen, C.-W. (2007) Crystallization Kinetics of Ultrathin Amorphous Si Film Induced by Al Metal Layer under Thermal Annealing and Pulsed Laser Irradiation. Journal of Applied Physics, 101, Article ID: 043518.
http://dx.doi.org/10.1063/1.2654512

[4]   Bokhonov, B. and Korchagin, M. (2000) In Situ Investigation of Stage of the Formation of Eutectic Alloys in Si-Au and Si-Al Systems. Journal of Alloys and Compounds, 312, 238-250.
http://dx.doi.org/10.1016/S0925-8388(00)01173-7

[5]   Ehrhardt, J., Klimmer, A., Eisenmenger, J., Müller, Th., Boyen, H.-G., Ziemanna, P., Biskupek, J. and Kaiser, U. (2006) Influence of Ion Induced Amorphicity on the Diffusion of Gold into Silicon. Journal of Applied Physics, 100, Article ID: 063534. http://dx.doi.org/10.1063/1.2259815

[6]   Knaepen, W., Detavernier, C., Van Meirhaeghe, R.L., Sweet, J.J. and Lavoie, C. (2008) In-Situ X-Ray Diffraction Study of Metal Induced Crystallization of Amorphous Silicon. Thin Solid Films, 516, 4946-4952.
http://dx.doi.org/10.1016/j.tsf.2007.09.037

[7]   Bal, J.K. and Hazra, S. (2007) Interfacial Role in Room-Temperature Diffusion of Au into Si Substrates. Physical Review B, 75, Article ID: 205411. http://dx.doi.org/10.1103/PhysRevB.75.205411

[8]   Ashtikar, M.S. and Sharma, G.L. (1995) Structural Investigation of Gold Induced Crystallization in Hydrogenated Amorphous Silicon Thin Films. Japanese Journal of Applied Physics, 34, 5520-5526.
http://dx.doi.org/10.1143/JJAP.34.5520

[9]   Chromik, R.R., Zavalij, L., Johnson, M.D. and Cotts, E.J. (2002) Calorimetric Investigation of the Formation of Metastable Silicides in Au/a-Si Thin Film Multilayers. Journal of Applied Physics, 91, 8992-8998.
http://dx.doi.org/10.1063/1.1432774

[10]   Wu, J.S., Dhara, S., Wu, C.T., Chen, K.H., Chen, Y.F. and Chen, L.C. (2002) Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Oxide Nanowire. Advanced Materials, 14, 1847-1850.
http://dx.doi.org/10.1002/adma.200290017

[11]   Shpyrko, O.G., Streitel, R., Balagurusamy, V.S.K., Grigoriev, A.Y., Deutsch, M., Ocko, B.M., Meron, M., Lin, B. and Pershan, P.S. (2007) Crystalline Surface Phases of the Liquid Au-Si Eutectic Alloy. Physical Review B, 76, Article ID: 245436. http://dx.doi.org/10.1103/PhysRevB.76.245436

[12]   Pinardi, A.L., Leake, S.J., Felici, R. and Robinson, I.K. (2009) Formation of an Au-Si Eutectic on a Clean Silicon Surface. Physical Review B, 79, Article ID: 045416.
http://dx.doi.org/10.1103/PhysRevB.79.045416

[13]   Schülli, T.U., Daudin, R., Renaud, G., Vaysset, A., Geaymond, O. and Pasturel, A. (2010) Substrate-Enhanced Supercooling in AuSi Eutectic Droplets. Nature, 464, 1174-1177.
http://dx.doi.org/10.1038/nature08986

[14]   Chandra, A. and Clemens, B.M.J. (2004) Monodisperse Nanoparticles via Metal Induced Crystallization. Journal of Applied Physics, 96, 6776-6781. http://dx.doi.org/10.1063/1.1812817

[15]   Venkatachalam, D.K., Fletcher, N.H., Sood, D.K. and Elliman, R.G. (2009) Self-Assembled Nanoparticle Spirals from Two-Dimensional Compositional Banding in Thin Films. Applied Physics Letters, 94, Article ID: 213110.
http://dx.doi.org/10.1063/1.3143666

[16]   Aono, M., Takahashi, M., Takiguchi, H., Okamoto, Y., Kitazawa, N. and Watanabe, Y. (2012) Thermal Annealing of a-Si/Au Superlattice Thin Films. Journal of Non-Crystalline Solids, 358, 2150-2153.
http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.088

[17]   Miyazaki, H., Takiguchi, H., Aono, M. and Okamoto, Y. (2012) Influence of Annealing Temperature and Au Concentration on the Electrical Properties of Multilayered a-Ge/Au Films. Journal of Non-Crystalline Solids, 358, 2103-2106.
http://dx.doi.org/10.1016/j.jnoncrysol.2012.01.064

[18]   Stockman, M.I. (2010) Nanoscience: Dark-Hot Resonances. Nature, 467, 541-542.

[19]   Derkacs, D., Lim, S.H., Matheu, P., Mar, W. and Yu, E.T. (2006) Improved Performance of Amorphous Silicon Solar Cells via Scattering from Surface Plasmon Polaritons in Nearby Metallic Nanoparticles. Applied Physics Letters, 89, Article ID: 093103. http://dx.doi.org/10.1063/1.2336629

[20]   Fujiki, A., Uemura, T., Zettsu, N., Akai-Kasaya, M., Saito, A. and Kuwahara, Y. (2010) Enhanced Fluorescence by Surface Plasmon Coupling of Au Nanoparticles in an Organic Electroluminescence Diode. Applied Physics Letters, 96, Article ID: 043307. http://dx.doi.org/10.1063/1.3271773

[21]   Cheng, C.W., Sie, E.J., Liu, B., Huan, C.H.A., Sum, T.C., Sun, H.D. and Fan, H.J. (2010) Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles. Applied Physics Letters, 96, Article ID: 071107. http://dx.doi.org/10.1063/1.3323091

[22]   Wu, T.H., Kuo, P.C., Ou, S.L., Chen, J.P., Yen, P.F., Jeng, T.R., Wu, C.Y. and Huang, D.R. (2008) Diffusion and Crystallization Mechanisms of Ge/Au Bilayer Media for Write-Once Optical Disk. Applied Physics Letters, 92, Article ID: 011126. http://dx.doi.org/10.1063/1.2831690

[23]   Guzman, J., Boswell-Koller, C.N., Beeman, J.W., Bustillo, K.C., Conry, T., Dubón, O.D., Hansen, W.L., Levander, A. X., Liao, C.Y., Lieten, R.R., Sawyer, C.A., Sherburne, M.P., Shin, S.J., Stone, P.R., Watanabe, M., Yu, K.M., Ager III, J.W., Chrzan, D.C. and Haller, E.E. (2011) Reversible Phase Changes in Ge-Au Nanoparticles. Applied Physics Letters, 98, Article ID: 193101.
http://dx.doi.org/10.1063/1.3584850

[24]   Siegel, J., Lyutakov, O., Rybka, V., Kolská, Z. and Svorcík, V. (2011) Properties of Gold Nanostructures Sputtered on Glass. Nanoscale Research Letters, 6, 96-99. http://dx.doi.org/10.1186/1556-276X-6-96

[25]   Alvarez, F., Díaz, C.C., Valladares, A.A. and Valladares, R.M. (2002) Radial Distribution Functions of ab Initio Generated Amorphous Covalent Networks. Physical Review B, 65, Article ID: 113108.
http://dx.doi.org/10.1103/PhysRevB.65.113108

[26]   Mittemeijer, E.J., Welzel, U. and Kristallogr, Z. (2008) The “State of the Art” of the Diffraction Analysis of Crystallite Size and Lattice Strain. Zeitschrift für Kristallographie, Crystalline Materials, 223, 552-560.
http://dx.doi.org/10.1524/zkri.2008.1213

[27]   Warren, B.E. (1990) X-Ray Diffraction. Dover, New York.

[28]   Ida, T., Shimazaki, S., Hibino, H. and Toraya, H. (2003) Diffraction Peak Profiles from Spherical Crystallites with Lognormal Size Distribution. Journal of Applied Crystallography, 36, 1107-1115.
http://dx.doi.org/10.1107/S0021889803011580

[29]   Robb, D.T. and Privman, V. (2008) Model of Nanocrystal Formation in Solution by Burst Nucleation and Diffusional Growth. Langmuir, 24, 26-35. http://dx.doi.org/10.1021/la702097g

[30]   Privman, V. (2008) Diffusional Nucleation of Nanocrystals and Their Self-Assembly into Uniform Colloids. Journal of Optoelectronics and Advanced Materials, 10, 2827-2839.

[31]   Nygren, E., Park, B., Goldman, L.M. and Spaepen, F. (1990) Diffusivity of Gold in Amorphous Silicon Measured by the Artificial Multilayer Technique. Applied Physics Letters, 56, 2094-2096. http://dx.doi.org/10.1063/1.102983

[32]   Abe, H., Ishibashi, M., Ohshima, K., Suzuki, T., Wuttig, M. and Kakurai, K. (1994) Kinetics of the Martensitic Transition in In-Tl Alloys. Physical Review B, 50, 9020-9024.
http://dx.doi.org/10.1103/PhysRevB.50.9020

[33]   Onsager, L. (1944) Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Physical Review, 65, 117-149. http://dx.doi.org/10.1103/PhysRev.65.117

[34]   Phu, X.T.P., Ngo, V.T. and Diep, H.T. (2009) Critical Behavior of Magnetic Thin Films. Surface Science, 603, 109-116. http://dx.doi.org/10.1016/j.susc.2008.10.037

[35]   Tanaka, T. (2010) Prediction of Phase Diagrams in Nano-Sized Binary Alloys. Materials Science Forum, 653, 55-75.
http://dx.doi.org/10.4028/www.scientific.net/MSF.653.55

[36]   Yeum, K.S., Speiser, R. and Poirier, D.R. (1989) Estimation of the Surface Tensions of Binary Liquid Alloys. Metallurgical Transactions B, 20, 693-703.

 
 
Top