[1] www.who.int/topics/cancer/
[2] Rabinow, B.E. (2004) Nanosuspensions in Drug Delivery. Nature Reviews Drug Discovery, 39, 785-796.
http://dx.doi.org/10.1038/nrd1494
[3] Meibohm, B. and Derendorf, H. (2002) Pharmacokinetic/Pharmacodynamic Studies in Drug Product Development. Journal of Pharmaceutical Sciences, 91, 18-31.
http://dx.doi.org/10.1002/jps.1167
[4] Scaglione, F. (2002) Can PK/PD Be Used in Everyday Clinical Practice. International Journal of Antimicrobial Agents, 19, 349-353.
http://dx.doi.org/10.1016/S0924-8579(02)00020-1
[5] Duncan, R., Coatsworth, J.K. and Burtles, S. (1998) Preclinical Toxicology of a Novel Polymeric Antitumour Agent: HPMA Copolymer-Doxorubicin (PK1). Human & Experimental Toxicology, 17, 93-104.
http://dx.doi.org/10.1191/096032798678908378
[6] Hopewel, J.W., Duncan, R., Wilding, D. and Chakrabarti, K. (2001) Preclinical Evaluation of the Cardiotoxicity of PK2: A Novel HPMA Copolymer-Doxorubicin-Galactosamine Conjugate Antitumour Agent. Human & Experimental Toxicology, 20, 461-470.
http://dx.doi.org/10.1191/096032701682693017
[7] Mahmood, I. (2001) Interspecies Scaling of Maximum Tolerated Dose of Anticancer Drugs: Relevance to Starting Dose for Phase I Clinical Trials. American Journal of Therapeutics, 8, 109-116.
http://dx.doi.org/10.1097/00045391-200103000-00005
[8] Howell, S.B. (2001) Clinical Applications of a Novel Sustained-Release Injectable Drug Delivery System: DepoFoam Technology. Cancer Journal, 7, 219-227.
[9] Maeda, H. (2001) The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting. Advances in Enzyme Regulation, 41, 189-207.
http://dx.doi.org/10.1016/S0065-2571(00)00013-3
[10] Park, J.W. (2002) Liposome Based Drug Delivery in Breast Cancer Treatment. Breast Cancer Research, 4, 95-99.
http://dx.doi.org/10.1186/bcr432
[11] Goldenberg, D.M. (2002) Targeted Therapy of Cancer with Radiolabeled Antibodies. Journal of Nuclear Medicine, 43, 693-713.
[12] Schipper, N.G.M., Varum, K.M. and Artursson, P. (1996) Chitosan as Absorption Enhancers for Poorly Absorbable Drugs: Influence of Molecular Weight and Degree of Acetylation on Drug Transport across Human Intestinal Epithelia (Caco-29 Cells). Pharmaceutical Research, 13, 1686-1692.
http://dx.doi.org/10.1023/A:1016444808000
[13] Martin, E.A., Brown, K., Gaskell, M., Al-Azzawi, F., Garner, R.C., Boocock, D.J., Mattock, E., Pring, D.W., Dingley, K., Turteltaub, K.W., Smith, L.L. and White, I.N.H. (2003) Tamoxifen DNA Damage Detected in Human Endometrium Using Accelerator Mass Spectrometry. Cancer Research, 63, 8461-8465.
[14] Lashley, M.R., Niedzinski, E.J., Rogers, J.M., Denison, M.S. and Nantz, M.H. (2002) Synthesis and Estrogen Receptor Affinity of a 4-Hydroxytamoxifen-Labeled Ligand for Diagnostic Imaging. Bioorganic & Medicinal Chemistry, 10, 4075-4082.
http://dx.doi.org/10.1016/S0968-0896(02)00329-2
[15] Marcsek, Z., Kocsis, Z., Jakab, M., Szende, B. and Tompa, A. (2004) The Efficacy of Tamoxifen in Estrogen Receptor-Positive Breast Cancer Cells Is Enhanced by a Medical Nutriment. Cancer Biotherapy & Radiopharmaceuticals, 19, 746-753.
http://dx.doi.org/10.1089/cbr.2004.19.746
[16] Heres-Pulido, E.M., Duenas-Garcia, I., Castaneda-Partida, L., Sanchez-Garcia, A., Contreras-Sousa, M., Duran-Dias, A. and Ulrich, G. (2004) Genotoxicity of Tamoxifen Citrate and 4-Nitroquinoline-1-Oxide in the Wing Spot Test Drosophila Melanogaster. Mutagenesis, 19, 187-193.
http://dx.doi.org/10.1093/mutage/geh020
[17] Chodak, G.W. and Kolvenbag, G.J.C.M. (2001) Will the Experience with Tamoxifen in Breast Cancer Help Define the Role of Antiandrogens in Prostate Cancer? Prostate Cancer and Prostatic Diseases, 4, 72-80.
http://dx.doi.org/10.1038/sj.pcan.4500518
[18] Krishnaiah, Y.S.R., Karthikeyan, R.S. and Satyanarayana, V. (2002) A Three-Layer Guar Gum Matrix Tablet for Oral Controlled Delivery of Highly Soluble Metoprolol Tartrate. International Journal of Pharmaceutics, 241, 353-366.
http://dx.doi.org/10.1016/S0378-5173(02)00273-9
[19] Toti, U.S. and Aminabhavi, T.M. (2004) Modified Guar Gum Matrix Tablet for Controlled Release of Diltiazem Hydrochloride. Journal of Controlled Release, 95, 567-577.
http://dx.doi.org/10.1016/j.jconrel.2003.12.019
[20] Soppirnath, K.S. and Aminabhavi, T.M. (2002) Water Transport and Drug Release Study from Cross-Linked Polyacrylamide Grafted Guar Gum Hydrogel Microspheres for the Controlled Release Application. European Journal of Pharmaceutics and Biopharmaceutics, 53, 87-98.
http://dx.doi.org/10.1016/S0939-6411(01)00205-3
[21] Wassel, G.M., Omar, S.M. and Ammar, N.M. (1989) Application of Guar Flour and Prepared Guaran in Tablet Manufacture. Journal of Drug Research, 18, 1-8.
[22] Sarmah, J.K., Mahanta, R., Bhattacharjee, S.K., Mahanta, R. and Biswas, A. (2011) Controlled Release of Tamoxifen Citrate Encapsulated in Cross-Linked Guar Gum Nanoparticles. International Journal of Biological Macromolecules, 49, 390-396.
http://dx.doi.org/10.1016/j.ijbiomac.2011.05.020
[23] Sarmah, J.K., Bhattacharjee, S.K., Mahanta, R. and Mahanta, R. (2009) Preparation of Cross-Linked Guar Gum Nanospheres Containing Tamoxifen Citrate by Single Step Emulsion in Situ Polymer Cross-Linking Method. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 65, 329-334.
[24] Gliko-Kabir, I., Yagen, B., Penhasi, A. and Rubinstein, A. (2000) Phosphated Crosslinked Guar for Colon-Specific Drug Delivery: I. Preparation and Physicochemical Characterization. Journal of Controlled Release, 63, 121-127.
http://dx.doi.org/10.1016/S0168-3659(99)00179-0
[25] Gliko-Kabir, I., Yagen, B., Penhasi, A. and Rubinstein, A. (1998) Low Swelling, Crosslinked Guar and Its Potential Use as Colon-Specific Drug Carrier. Pharmaceutical Research, 15, 1019-1025.
http://dx.doi.org/10.1023/A:1011921925745
[26] Krishnaiah, Y.S.R., Seetha Devi, A., Nageswara Rao, L., Bhaskar Reddy, P.R., Karthikeyan, R.S. and Satyanarayana, V. (2001) Guar Gum as a Carrier for Colon Specific Delivery; Influence of Metronidazole and Tinidazole on in Vitro Release of Albendazole from Guar Gum Matrix Tablets. Journal of Pharmacy and Pharmaceutical Sciences, 4, 235-243.
[27] Gliko-Kabir, I., Yagen, B., Baluom, M. and Rubinstein, A. (2000) Phosphated Crosslinked Guar for Colon-Specific Drug Delivery. II. In Vitro and in Vivo Evaluation in the Rat. Journal of Controlled Release, 63, 129-134.
http://dx.doi.org/10.1016/S0168-3659(99)00180-7
[28] Hard, G.C., Iatropoulos, M.J., Jordan, K., Radi, L., Kaltenberg, O.P., Imondi, A.R. and Williams, G.M. (1993) Major Difference in the Hepatocarcinogenicity and DNA Adduct Forming Ability between Toremifene and Tamoxifen in Female Crl: CD (BR) Rats. Cancer Research, 53, 4534-4541.
[29] Albukhari, A.A., Gashlan, H.M., El-Beshbishy, H.A., Nagy, A.A. and Abdel-Naim, A.B. (2009) Caffeic Acid Phenethyl Ester Protects against Tamoxifen-Induced Hepatotoxicity in Rats. Food and Chemical Toxicology, 47, 1689-1695.
http://dx.doi.org/10.1016/j.fct.2009.04.021
[30] Elefsiniotis, I.S., Pantazis, K.D., Ilias, A., Pallis, L., Mariolis, A., Glynou, I., Kada, H. and Moulakakis, A. (2004) Tamoxifen Induced Hepatotoxicity in Breast Cancer Patients with Pre-Existing Liver Steatosis: The Role of Glucose Intolerance. European Journal of Gastroenterology & Hepatology, 16, 593-598.
http://dx.doi.org/10.1097/00042737-200406000-00013
[31] Jain, A.K., Swarnakar, N.K., Godugu, C., Singh, R.P. and Jain, S. (2011) The Effect of the Oral Administration of Polymeric Nanoparticles on the Efficacy and Toxicity of Tamoxifen. Biomaterials, 32, 503-515.
http://dx.doi.org/10.1016/j.biomaterials.2010.09.037