[1] Arnett, W.D., Bahcall, J.N., Kirshner, R.P. and Woosley, S.E. (1989) Supernova 1987A. Annual Review of Astronomy and Astrophysics, 27, 629-700. http://dx.doi.org/10.1146/annurev.aa.27.090189.003213
[2] Norman, M., Smarr, L., Smith, M. and Wilson, J. (1981) Hydrodynamic Formation of Twin-Exhaust Jets. Astrophysical Journal, 247, 52-58. http://dx.doi.org/10.1086/159009
[3] Evans, R., Bennett, A. and Pert, G. (1982) Rayleigh-Taylor Instabilities in Laser-Accelerated Targets. Physical Review Letters, 49, 1639-1642. http://dx.doi.org/10.1103/PhysRevLett.49.1639
[4] Lindl, J.D., McCrory, R.L. and Campbell, E.M. (1992) Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion. Physics Today, 45, 32-40. http://dx.doi.org/10.1063/1.881318
[5] Beale, J.C. and Reitz, R.D. (1999) Modeling Spray Atomization with the Kelvin-Helmholtz /Rayleigh-Taylor Hybrid Model. Atomization Sprays, 9, 623-650. http://dx.doi.org/10.1615/AtomizSpr.v9.i6.40
[6] Kong, S., Senecal, P. and Reitz, R. (1999) Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines. Oil & Gas Science and Technology, 54, 197-204.
http://dx.doi.org/10.2516/ogst:1999015
[7] Rayleigh, L. (1883) Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density. Proceedings of the London Mathematical Society, 14, 170-177.
[8] Taylor, G.I. (1950) The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I. Proceedings of the Royal Society A, 201, 192-196. http://dx.doi.org/10.1098/rspa.1950.0052
[9] Lewis, D. (1950) The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. II. Proceedings of the Royal Society A, 202, 81-96.
[10] Layzer, D. (1955) On the Instability of Superposed Fluids in a Gravitational Field. Astrophysical Journal, 122, 1-12.
http://dx.doi.org/10.1086/146048
[11] Goncharov, V. (2002) Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers. Physical Review Letters, 88, Article ID: 134502.
http://dx.doi.org/10.1103/PhysRevLett.88.134502
[12] Andrews, M.J. and Dalziel, S.B. (2010) Small Atwood Number Rayleigh-Taylor Experiments. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 368, 1663-1679.
[13] Dimonte, G., Ramaprabhu, P., Youngs, D., Andrews, M. and Rosner, R. (2005) Recent Advances in the Turbulent Rayleigh-Taylor Instability. Physics of Plasmas, 12, Article ID: 056301.
http://dx.doi.org/10.1063/1.1871952
[14] Ramaprabhu, P. and Andrews, M. (2004) Experimental Investigation of Rayleigh-Taylor Mixing at Small Atwood Numbers. Journal of Fluid Mechanics, 502, 233-271.
http://dx.doi.org/10.1017/S0022112003007419
[15] Waddell, J., Niederhaus, C. and Jacobs, J. (2001) Experimental Study of Rayleigh-Taylor Instability: Low Atwood Number Liquid Systems with Single-Mode Initial Perturbations. Physics of Fluids (1994-Present), 13, 1263-1273.
http://dx.doi.org/10.1063/1.1359762
[16] Baker, G.R., Meiron, D.I. and Orszag, S.A. (1980) Vortex Simulations of the Rayleigh-Taylor Instability. Physics of Fluids (1958-1988), 23, 1485-1490. http://dx.doi.org/10.1063/1.863173
[17] Ramaprabhu, P., Dimonte, G. and Andrews, M. (2005) A Numerical Study of the Influence of Initial Perturbations on the Turbulent Rayleigh-Taylor Instability. Journal of Fluid Mechanics, 536, 285-320.
http://dx.doi.org/10.1017/S002211200500488X
[18] Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P. and Jayaraj, J. (2012) The Late-Time Dynamics of the Single-Mode Rayleigh-Taylor Instability. Physics of Fluids (1994-Present), 24, Article ID: 074107. http://dx.doi.org/10.1063/1.4733396
[19] Youngs, D.L. (1984) Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability. Physica D: Nonlinear Phenomena, 12, 32-44. http://dx.doi.org/10.1016/0167-2789(84)90512-8
[20] Baker, G., Verdon, C., McCrory, R. and Orszag, S. (1987) Rayleigh-Taylor Instability of Fluid Layers. Journal of Fluid Mechanics, 178, 161-175. http://dx.doi.org/10.1017/S0022112087001162
[21] Brackbill, J., Kothe, D.B. and Zemach, C. (1992) A Continuum Method for Modeling Surface Tension. Journal of Computational Physics, 100, 335-354. http://dx.doi.org/10.1016/0021-9991(92)90240-Y
[22] Piriz, A., Cortázar, O., Cela, J.L. and Tahir, N. (2006) The Rayleigh-Taylor Instability. American Journal of Physics, 74, 1095-1098. http://dx.doi.org/10.1119/1.2358158
[23] Harlow, F.H. and Welch, J.E. (1965) Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids (1958-1988), 8, 2182-2189.
http://dx.doi.org/10.1063/1.1761178
[24] Sussman, M. and Puckett, E.G. (2000) A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. Journal of Computational Physics, 162, 301-337.
http://dx.doi.org/10.1006/jcph.2000.6537
[25] Van der Pijl, S., Segal, A., Vuik, C. and Wesseling, P. (2005) A Mass-Conserving Level-Set Method for Modelling of Multi-Phase Flows. International Journal for Numerical Methods in Fluids, 47, 339-361.
http://dx.doi.org/10.1002/fld.817
[26] Ramaprabhu, P. and Dimonte, G. (2005) Single-Mode Dynamics of the Rayleigh-Taylor Instability at Any Density Ratio. Physical Review E, 71, Article ID: 036314. http://dx.doi.org/10.1103/PhysRevE.71.036314
[27] He, X., Zhang, R., Chen, S. and Doolen, G.D. (1999) On the Three-Dimensional Rayleigh-Taylor Instability. Physics of Fluids (1994-Present), 11, 1143-1152.