[1] Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. (2006) Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels. PNAS, 103, 11206-11210.
http://dx.doi.org/10.1073/pnas.0604600103
[2] Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998) A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory, Report NREL/TP-580-24190.
[3] Patil, V., Tran, K.Q. and Giseirod, H.R. (2008) Towards Sustainable Production of Biofuels from Microalge. International Journal Molecular Sciences, 9, 1188-1195.
http://dx.doi.org/10.3390/ijms9071188
[4] Griffiths, M.J. and Harrison, S.T.L. (2009) Lipid Productivity as a Key Characteristic for Choosing Algal Species for Biodiesel Production. Journal of Applied Phycology, 21, 493-507.
http://dx.doi.org/10.1007/s10811-008-9392-7
[5] Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
http://dx.doi.org/10.1263/jbb.101.87
[6] Lorenz, R.T. and Cysewski, G.R. (2003) Commercial Potential for Haematococcus microalga as a Natural Source of Astaxanthin. Trends in Biotechnology, 18, 160-167.
http://dx.doi.org/10.1016/S0167-7799(00)01433-5
[7] Pulz, O. (2004) Photobioreactors: Production Systems for Phototrophic Microorganisms. Applied Microbiology and Biotechnology, 57, 287-293.
[8] Bligh, G. and Dyer, W. (1959) A Rapid Method for Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
http://dx.doi.org/10.1139/o59-099
[9] Yoo, C., Jun, S.Y. and Lee, J.Y. (2010) Selection of Microalgae for Lipid Production under High Levels Carbon Dioxide. Bioresource Technology, 101, S71-S74.
http://dx.doi.org/10.1016/j.biortech.2009.03.030
[10] Pacheco, S. (2009) Preparo de padrões analíticos, estudo de estabilidade e parâmetros de validação para ensaio de carotenóides por cromatografia líquida. UFRRJ, Dissertação, Mestrado em Ciência e Tecnologia de Alimentos, Ciência dos Alimentos, Seropédica, 106 p.
[11] Tsigankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L. and Seibert, M. (2006) Hidrogen Production by Sulfur-Deprived Chlamydomonas reinhardtii under Photoautotrophic Conditions. Internacional Journal of Hidrogen Energy, 31, 1574-1584.
[12] Mattox, K.R. and Stewart, K.D. (1984) Classification of the Green Algae: A Concept Based on Comparative Cytology. In: Irvine, D.E.G. and John, D., Eds., Systematics of the Green Algae, Academic Press, London, 41, 42, 57, 58.
[13] Becker, W. (2004) Microalgae in Human and Animal Nutrition. In: Richmond, A., Ed., Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, London, 566 p.
[14] Carolino, L. do R.V.C. (2011) Cultivo de microalgas unicelulares para determinação da produção lipídica e sequestro de carbono. ULisboa Faculdade de Ciências Departamento de Biologia Vegetal, Mestrado de Biologia Celular e Biotecnologia, 91.
[15] Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
http://dx.doi.org/10.1016/j.biotechadv.2007.02.001
[16] Gouveia, L. and Oliveira, A. (2009) Microalgae as Raw Materials for Biofuels Production. Journal of Industrial Microbiology and Biotechnology, 36, 269-274.
http://dx.doi.org/10.1007/s10295-008-0495-6
[17] Deng, X., Li, Y. and Fei, X. (2009) Microalgae: A Promising Feedstock for Biodiesel. African Journal of Microbiology Research, 3, 1008-1014.
[18] Colla, L.M., Bertolini, T.E. and Costa, J.A. (2004) Fatty Acids Profile of Spirulina platensis Grown under Different Temperatures and Nitrogen Concentrations. Zeitschrift fur Naturforschung, 59, 55-59.
[19] Deshnium, P., Paithoonrangsarid, K. and Suphatrakul, A. (2000) Temperature-Independent and Dependent Expression of Desaturase Genes in Filamentous Cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiology Letters, 184, 207-213.
http://dx.doi.org/10.1111/j.1574-6968.2000.tb09015.x
[20] Olguín, E., Galicia, S. and Angulo-Guerrero, O. (2001) The Effect of Low Light Flux and Nitrogen Deficiency on the Chemical Composition of Spirulina sp. (Arthrospira) Grown on Digested Pig Waste. Bioresource Technology, 77, 19-24.
http://dx.doi.org/10.1016/S0960-8524(00)00142-5
[21] Makulla, A. (2000) Fatty Acid Composition of Scenedesmus obliquus: Correlation to Dilution Rates. LimnologicaEcology and Management of Inland Waters, 30, 162-168.
http://dx.doi.org/10.1016/S0075-9511(00)80011-0
[22] Eonseon, J., Polle, J.E.W., Kumlee, H., Hyun, S.M. and Chang, M. (2003) Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application. Journal of Microbiology and Biotechnology, 13, 165-174.
[23] Guerin, M., Huntley, M.E. and Olaizola, M. (2003) Haematococcus Astaxanthin: Application for Human Health and Nutrition. Trends in Biotechnology, 21, 210-216.
http://dx.doi.org/10.1016/S0167-7799(03)00078-7
[24] Del-Campo, J.A., Garcia-Gonzalez, M. and Guerrero, M.G. (2007) Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives. Applied Microbiology and Biotechnology, 74, 1163-1174.
http://dx.doi.org/10.1007/s00253-007-0844-9
[25] Brasil. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada-RDC No. 217, de 29 de julho de 2005. https://prosig.alvessilva.com.br/textos/5853.doc