JMP  Vol.5 No.15 , September 2014
The Bowing Parameters of CaχMg1-χO Ternary Alloys
ABSTRACT
On the basis of first principles calculations using density functional theory, we explore the structural and electronic properties of two binaries: CaO and MgO in rock salt structures. Structural properties of the semiconductor CaχMg1-χO alloys are derived from total-energy minimization within the General Gradient Approximation. The band gap bowing parameters dependence is very powerful Calcium composition. The results offer that an average bowing parameter of CaχMg1-χO alloys is b = ~0.583$ eV. We analyzed the volume deformation, charge transfer and structural relaxation effects of the CaχMg1-χO alloys.

Cite this paper
Gulebaglan, S. , Dogan, E. , Aycibin, M. , Secuk, M. , Erdinc, B. and Akkus, H. (2014) The Bowing Parameters of CaχMg1-χO Ternary Alloys. Journal of Modern Physics, 5, 1546-1551. doi: 10.4236/jmp.2014.515155.
References
[1]   Erden Gulebaglan, S. (2012) Modern Physics Letters B, 26, 1250199-8.

[2]   Mazouza, H.M.A., Belabbesa, A., Zaouib, A. and Ferhat, M. (2010) Superlattices and Microstructures, 48, 560-568.
http://dx.doi.org/10.1016/j.spmi.2010.09.012

[3]   Moreno-Armenta, M.G., Mancera, L. and Takeuchi, N. (2003) Physica Status Solidi (B), 238, 127-135.
http://dx.doi.org/10.1002/pssb.200301808

[4]   Duan, Y., Qin, L., Tang, G. and Shi, L. (2008) European Physical Journal B, 66, 201-209.
http://dx.doi.org/10.1140/epjb/e2008-00415-3

[5]   Ponce, S., Bertrand, B., Smet, P.F., Poelman, D., Mikami, M. and Ganze, X. (2013) Optical Materials, 35, 1477-1480.
http://dx.doi.org/10.1016/j.optmat.2013.03.001

[6]   Albuquerque, E.L. and Vasconcelos, M.S. (2008) Journal of Physics: Conference Series, 042006, 1-4.
http://dx.doi.org/10.1088/1742-6596/100/4/042006

[7]   Karki Bijiya, B., Bhattarai, D. and Stixrude, L. (2006) Physical Review B, 73, 174208-1:7.
http://dx.doi.org/10.1103/PhysRevB.73.174208

[8]   Makaremi, N. and Nourbakhsh, Z. (2013) Journal of Superconductivity and Novel Magnetism, 26, 818-824.
http://dx.doi.org/10.1007/s10948-012-1991-5

[9]   Nishii, J., Ohtomo, A., Ikeda, M., Yamado, Y., Ohtani, K., Ohno, H. and Kawasahi, M. (2006) Applied Surface Science, 252, 2507-2511.
http://dx.doi.org/10.1007/s10948-012-1991-5

[10]   Stolbov, S.V. and Cohen, R.E. (2002) Physical Review B, 65, 092203-3.
http://dx.doi.org/10.1103/PhysRevB.65.092203

[11]   Miloua, R., Miloua, F., Kebbab, Z. and Benramdane, N. (2008) ISJAEE, 6, 91-95.

[12]   Srivastava, A., Chauhan, M., Singh, R.K. and Padegaonker, R. (2011) Physica Status Solidi B, 248, 1901-1907.
http://dx.doi.org/10.1002/pssb.201046508

[13]   Baroni, S., Corso, A.D., de Gironcoli, S. and Giannozzi, P.
http://www.pwscf.org

[14]   Kohn, W. and Sham, L.J. (1965) Physical Review, 140, 1133-1138. http://dx.doi.org/10.1103/PhysRev.140.A1133

[15]   Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Physical Review Letters, 77, 3865-3868.
http://dx.doi.org/10.1103/PhysRevLett.77.3865

[16]   Monkhorst, H.J. and Pack, J.D. (1976) Physical Review B, 13, 5188-5192.
http://dx.doi.org/10.1103/PhysRevB.13.5188

[17]   Mehl, M.J., Klein, B.M. and Papaconstantopoulos, D.A. (1995) Intermetallic Compounds: Principles and Practice, Vol. 1: Principles. 195-210.

[18]   Fei, Y. (1999) American Mineralogist, 84, 272-276.

[19]   Karki, B.B., Stixrude, L., Clark, S.J., Warren, M.C., Ancland, G.J. and Crain, J. (1997) American Mineralogist, 82, 51-60.

[20]   Richet, P., Mao, H.K. and Bell, P.M. (1988) Journal of Geophysical Research: Solid Earth, 93, 15279-15288.
http://dx.doi.org/10.1029/JB093iB12p15279

[21]   Drablia, S., Meradji, H., Ghemid, S., Labidi, S. and Bouhafs, B. (2009) Physica Scripta, 79, Article ID: 045002.

 
 
Top