[1] Condie, K.C. (2011) Earth as an Evolving Planetary System. 2nd Edition, Academic Press, New York, 574 p.
[2] Gubbins, D. (1972) Kinematic Dynamos and Geomagnetism. Nature Physical Science, 238, 119-122.
http://dx.doi.org/10.1038/physci238119a0
[3] British Geological Survey (2012) The Earth Magnetic Field. Overview of British Geological Service.
http://www.geomag.bgs.ac.uk/research/home.html
[4] Thompson, T. (1998) Geodynamo Theory. And the Matter of the Electric Universe Hypothesis.
http://www.tim-thompson.com/geodynamo.html
[5] Stern, D.P. (2002) A Millennium of Geomagnetism. Reviews of Geophysics, 40, 1-30.
http://istp.gsfc.nasa.gov/earthmag/mill_1.htm
http://dx.doi.org/10.1029/2000RG000097
[6] Glatzmaier, G.A. (2002) Geodynamo Simulations—How Realistic Are They? Annual Review. Earth & Planetary Sciences, 30, 237-257.
http://dx.doi.org/10.1146/annurev.earth.30.091201.140817
[7] Vichare, G. and Rajaram, R. (2009) Comparative Study of Models of Earth’s Magnetic Field Derived from Oersted, CHAMP and SAC-C Magnetic Satellite Data. Journal of Indian Geophysical Union, 13, 33-42.
[8] Herndon, J.M. (2009) Nature of Planetary Matter and Magnetic Field Generation in the Solar System. Current Science, 96, 1033-1039.
[9] Ofualagba, G. and Ubeku, E.U. (2011) The Analysis and Modelling of a Self-Excited Induction Generator Driven by a Variable Speed Wind Turbine. In: Carriveau R., Ed., Fundamental and Advanced Topics in Wind Power, InTech.
http://dx.doi.org/10.5772/18159
[10] Sohre, J.S. and Nippes, P.I. (1978) Electromagnetic Shaft Currents and Demagnetization on Rotors of Turbines and Compressors. Proceedings of the 7th Turbomachinery Symposium, College Station, 6-8 December 1977.
[11] Sohre, J.S. (1995) Shaft Riding Brushes to Control Electric Stray Currents.
http://turbolab.tamu.edu/proc/turboproc/T20/T2063-75.pdf
[12] Vol, A.A. (1988) Research of Shaft Currents Self-Excitation Conditions and Electro-Erosion in Steam Turbines. Transactions of Central Boiler and Turbine Institute, Leningrad, 245, 56-65. (in Russian)
[13] Safonov, L., Vol, A., Malev, V. and Alfeev, A. (1986) Electro-Erosion of Turbines. Teploenergetika, 6, 20-23. (in Russian)
[14] Kirschner, J. and Moon, S. (2010) An Investigation of the Homopolar Generator: Determining the Impact of System Characteristics on Efficiency. Electromagnetism: A Modeling and Simulation Approach. Project 2: Final Paper.
[15] Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S. and Wicht, J. (2011) Anelastic Convection-Driven Dynamo Benchmarks. Icarus, 216, 120-135.
http://dx.doi.org/10.1016/j.icarus.2011.08.014
[16] Olson, P.L., Glatzmaier, G.A. and Coe, R.S. (2011) Complex Polarity Reversals in a Geodynamo Model. Earth and Planetary Science Letters, 304, 168-179.
http://dx.doi.org/10.1016/j.epsl.2011.01.031
[17] Herndon, J.M. (2011) Geodynamic Basis of Heat Transport in the Earth. Current Science, 101, 1440-1450.
http://www.currentscience.ac.in/Volumes/101/11/1440.pdf
[18] Kays, W., Crawford, M. and Weigand, B. (2004) Convective Heat and Mass Transfer. 4th Edition, McGraw-Hill Professional, New York.
[19] Ganapathy, V. (1998) Boiler Circulation Calculations. Hydrocarbon Processing, January 1998, 101-105.
[20] International Atomic Energy Agency (2005) Natural Circulation in Water Cooled Nuclear Power Plants. Phenomena, Models, and Methodology for System Reliability Assessments. IAEA-TECDOC-1474, Vienna.
[21] Gauthier-Lafaye, F. (1997) The Last Natural Nuclear Fission Reactor. Nature, 387, 337.
http://dx.doi.org/10.1038/387337a0
[22] Gauthier-Lafaye, F. (2006) Time Constraint for the Occurrence of Uranium Deposits and Natural Nuclear Fission Reactors in the Paleoproterozoic Franceville Basin (Gabon). Geological Society of America Memoirs, 198, 157-167.
[23] Gilat, A. and Vol, A. (2005) Primordial Hydrogen-Helium Degassing, an Overlooked Major Energy Source for Internal Terrestrial Processes. HAIT Journal of Science and Engineering B, 2, 125-167.
[24] Gilat, A. and Vol, A. (2012) Degassing of Primordial Hydrogen and Helium as the Major Energy Source for Internal Terrestrial Processes. Geoscience Frontiers, 3, 911-921.
http://www.sciencedirect.com/science/article/pii/S1674987112000412
[25] Marsh, B.D. (1995) Solidification Fronts and Magmatic Evolution. The 1995 Hallimond Lecture.
http://www.minersoc.org/pages/Archive-MM/Volume_60/60-398-5.pdf
[26] Buffett, B.A. (2010) The Enigmatic Inner Core. Science, 328, 982-983.
http://dx.doi.org/10.1126/science.1190506
[27] Deuss, A., Irving, J.C.E. and Woodhouse, J.H. (2010) Regional Variation of Inner Core Anisotropy from Seismic Normal Mode Observations. Science, 328, 1018-1020.
http://dx.doi.org/10.1126/science.1188596
[28] Monnereau, M., Calvet, M., Margerin, L. and Souriau, A. (2010) Lopsided Growth of Earth’s Inner Core. Science, 328, 1014-1017.
http://dx.doi.org/10.1126/science.1186212
[29] Mattesini, M., Belonoshko, A.B., Buforn, E., Ramírez, M., Simak, S.I., Udías, A., Mao, H.K. and Ahuja, R. (2010) Hemispherical Anisotropic Patterns of the Earth’s Inner Core. Proceedings of the National Academy of Sciences of the United States of America, 107, 9507-9512.
http://dx.doi.org/10.1073/pnas.1004856107
[30] Zhang, Y.G. and Yin, Q.Z. (2012) Carbon and Other Light Element Contents in the Earth’s Core Based on First-Principles Molecular Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 109, 19579-19583.
[31] Ricolleau, A., Fei, Y.W., Corgne, A., Siebert, J. and Badro, J. (2011) Oxygen and Silicon Contents of Earth’s Core from High Pressure Metal-Silicate Partitioning Experiments. Earth and Planetary Science Letters, 310, 409-421.
[32] Tsuno, K., Frost, D.J. and Rubie, D.C. (2013) Simultaneous Partitioning of Silicon and Oxygen into the Earth’s Core during Early Earth Differentiation. Geophysical Research Letters, 40, 1-5.
[33] Karato, S. (1999) Seismic Anisotropy of the Earth’s Inner Core Resulting from Flow Induced by Maxwell Stresses. Nature, 402, 871-873.
[34] Robertson, W.M. (1966) Propagation of a Crack Filled with Liquid Metal. Transactions of the Metallurgical Society of AIME, 236, 1478-1482.
[35] Glickman, E.E. (2000) Mechanism of Liquid-Metal Embrittlement by Simple Experiments: From Atomistic to Life-Time. In: Lepinoux, J., et al., Eds., Multiscale Phenomena in Plasticity, NATO ASI Series, Kluwer Academic Publishers, Dortrecht, 383-401.
[36] Glickman, E. (2011) Dissolution-Condensation Mechanism of SCC in Liquid Metals: Driving Forces and Crack Kinetics. Metallurgical and Materials Transactions A, 42, 250-266.
http://dx.doi.org/10.1007/s11661-010-0429-6
[37] Glickman, E.E. (2002) Short Stripe Effect and Electromigration Stress. Microelectronic Engineering, 64, 383-389.
[38] Juzeliunas, E. and Hinken, J.H. (2000) A SQUID Study of Magnetic Fields Induced by the Metal-Liquid Interface. Electrochimica Acta, 45, 3453-3459.
http://dx.doi.org/10.1016/S0013-4686(00)00414-X
[39] Keondjan, V.P. (1981) On the Mechanism of the Gravitational Differentiation in the Inner Earth. In: O’Connell, R.J. and Fyfe, W.S., Eds., Evolution of the Earth, Geodynamics Series, Vol. 5, AGU, Washington DC, 167-195.
http://dx.doi.org/10.1029/GD005p0167
[40] Kohlstedt, D.L. and Holtzman, B.K. (2009) Shearing Melt out of the Earth: An Experimentalist’s Perspective on the Influence of Deformation on Melt Extraction. Annual Review of Earth and Planetary Sciences, 37, 561-593.
http://dx.doi.org/10.1146/annurev.earth.031208.100104
[41] Parmentier, E.M. (1981) A Possible Mantle Instability Due to Superplastic Deformation Associated with Phase Transitions. Geophysical Research Letters, 8, 143-146.
http://dx.doi.org/10.1029/GL008i002p00143
[42] Aubert, J., Amit, H., Hulot, G. and Olson, P. (2008) Thermochemical Flows Couple the Earth’s Inner Core Growth to Mantle Heterogeneity. Nature, 454, 758-761.
[43] Helge Gonnermann-Research. Overview.
www.soest.hawaii.edu/GG/SYI/helge/research.pdf
[44] Gonnermann, H.M., Jellinek, A.M., Richards, M.A. and Manga, M. (2004) Modulation of Mantle Plumes and Heat Flow at the Core Mantle Boundary by Plate-Scale Flow: Results from Laboratory Experiments. Earth and Planetary Science Letters, 226, 53-67.
http://dx.doi.org/10.1016/j.epsl.2004.07.021
[45] Jellinek, A.M., Gonnermann, H.M. and Richards, M.A. (2002) Plume Capture by Divergent Plate Motions: Implications for the Distribution of Hotspots, Geochemistry of Mid-Ocean Ridge Basalts, and Estimates of the Heat Flux at the Core-Mantle Boundary. Earth and Planetary Science Letters, 205, 361-378.
http://dx.doi.org/10.1016/S0012-821X(02)01070-1
[46] Gonnermann, H.M. and Mukhopadhyay, S. (2009) Preserving Noble Gases in a Convecting Mantle. Nature, 459, 560-563.
http://dx.doi.org/10.1038/nature08018
[47] Gufeld, I.L. and Matveeva, M.I. (2011) Barrier Effect of Degassing and Destruction of the Earth’s Crust. Doklady Earth Sciences, 438, 677-680.
[48] Gufeld, I.L., Gusev, G.A., Lyutikov, R.A. and Matveeva, M.I. (1999) Seismic Process as Phase Instability of Lithosphere. In: Hayakawa, M., Eds., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terra Scientific Publishing Co., Tokyo, 885-909.
[49] Persson, A.O. (2005) The Coriolis Effect: Four Centuries of Conflict between Common Sense and Mathematics. History of Meteorology, 2, 1-24.
[50] Aubert, J., Finlay, C.C. and Fournier, A. (2013) Bottom-Up Control of Geomagnetic Secular Variation by the Earth’s Inner Core. Nature, 502, 219-223.
http://dx.doi.org/10.1038/nature12574
[51] Sreenivasan, B. and Jellinek, A.M. (2012) Did the Tharsis Plume Terminate the Martian Dynamo? Earth and Planetary Science Letters, 349-350, 209-217.
http://dx.doi.org/10.1016/j.epsl.2012.07.013
[52] Prior, C.R. (2012) Electromagnetism. ASTeC Intense Beams Group. Rutherford Appleton Laboratory. Fellow and Tutor in Mathematics.
http://cas.web.cern.ch/cas/Baden/PDF/Electromagnetism-2.pdf
[53] Moffat, H.K. (1994) The Earth’s Dynamo. In: Lynden-Bell, D., Ed., Cosmical Magnetism, Springer, the Netherlands, 1-10, 215 p.
http://link.springer.com/book/10.1007/978-94-011-1110-2
[54] The Magnetic Field of the Earth-MIT.
http://www-gpsg.mit.edu/12.201_12.501/BOOK/chapter3.pdf
[55] Goupil, C., Seifert, W., Zabrocki, K., Muller, E. and Snyder, G.J. (2011) Thermodynamics of Thermoelectric Phenomena and Applications. Entropy, 13, 1481-1517.
http://dx.doi.org/10.3390/e13081481
[56] Rotzer, G., Lockwood, L., Gil, Z. and Jose, L. (1977) Measurement of Thermopelectric Coefficients at the Solid-Liquid Interface of Highly Doped p-Type Silicon. Journal of Applied Physics, 48, 750-753.
[57] Mayer, P.M. and Ram, R.J. (2006) Optimization of Heat Sink-Limited Thermoelectric Generators. Nanoscale and Microscale Thermophysical Engineering, 10, 143-155.
http://dx.doi.org/10.1080/10893950600643063
[58] Zheng, R.T., Gao, J.W., Wang, J.J. and Chen, G. (2010) Reversible Temperature Regulation of Electrical and Thermal Conductivity Using Liquid-Solid Phase Transitions. Nature Communications, 2, 289.
http://dx.doi.org/10.1038/ncomms1288
[59] Russell Humphreys, D. (2002) The Earth’s Magnetic Field Is Still Losing Energy. Creation Research Society Quarterly Journal, 39, 1-11.
[60] Davies, J.H. and Davies, D.R. (2010) Earth’s Surface Heat Flux. Solid Earth, 1, 5-24.
http://www.solid-earth.net/1/5/2010/se-1-5-2010.pdf
http://dx.doi.org/10.5194/se-1-5-2010
[61] Dethloff, C., Gaganidze, E., Svetukhin, V.V. and Aktaa, J. (2012) Modeling of Helium Bubble Nucleation and Growth in Neutron Irradiated Boron Doped RAFM Steels. Journal of Nuclear Materials, 426, 287-297.
http://dx.doi.org/10.1016/j.jnucmat.2011.12.025
[62] Gaganidze, E., Petersen, C., Materna-Morris, E., Dethloff, C., Weiß, O.J., Aktaa, J., Povstyanko, A., Fedoseev, A., Makarov, O. and Prokhorov, V. (2011) Mechanical Properties and TEM Examination of RAFM Steels Irradiated up to 70 dpa in BOR-60. Journal of Nuclear Materials, 417, 93-98.
http://dx.doi.org/10.1016/j.jnucmat.2010.12.047
[63] Zhang, P.B., Zhao, J.J., Qin, Y. and Wen, B. (2011) Stability and Dissolution of Helium-Vacancy Complexes in Vanadium Solid. Journal of Nuclear Materials, 419, 1-8.
[64] Liberman, M.A., Ivanov, M.F., Kiverin, A.D., Kuznetsov, M.S., Chukalovsky, A.A. and Rakhimova, T.V. (2010) Deflagration-to-Detonation Transition in Highly Reactive Combustible Mixtures. Acta Astronautica, 67, 688-701.
[65] NASA (2013) Planetary Fact Sheet-Metric.
http://nssdc.gsfc.nasa.gov/planetary/factsheet/
[66] Galilean Satellite Fact Sheet.
http://nssdc.gsfc.nasa.gov/planetary/factsheet/galileanfact_table.html
[67] Anderson, B.J., Johnson, C.L., Korth, H., Purucker, M.E., Winslow, R.M., Slavin, J.A., Solomon, S.C., McNutt Jr., R.L., Raines, J.M. and Zurbuchen, T.H. (2011) The Global Magnetic Field of Mercury from MESSENGER Orbital Observations. Science (American Association for the Advancement of Science), 333, 1859-1862.
http://dx.doi.org/10.1126/science.1211001
[68] Barton Paul Levenson. Effective Temperature.
http://bartonpaullevenson.com/Albedos.html
[69] Bob Alien. Planetary Statistics Table-Bob the Alien’s Tour of the Solar System.
www.bobthealien.co.uk/table.htm
[70] (2014) Sources and Movement of Heat within Planets. GEOL212: Planetary Geology Fall 2014.
http://www.geol.umd.edu/~jmerck/geol212/lectures/10.html
[71] Collins, G.C., McKinnon, W.B., Moore, J.M., Nimmo, F., Pappalardo, R.T., Prockter, L.M. and Schenk, P.M. (2009) Tectonics of the Outer Planet Satellites. Ch. 7. In: Watters, T.R. and Schultz, R.A., Eds., Planetary Tectonics, Cambridge University Press.
http://www.es.ucsc.edu/~fnimmo/website/icy_satellite_tectonics.pdf
[72] Bagenal, F. (1992) Giant Planet Magnetospheres. Annual Review of Earth and Planetary Sciences, 20, 289-328.
http://dx.doi.org/10.1146/annurev.ea.20.050192.001445
[73] Cebron, D., Le Bars, M., Moutou, C. and Le Gal, P. (2012) Elliptical Instability in Terrestrial Planets and Moons. Author Manuscript. Astronomy and Astrophysics, 539, 16".
http://hal.archives-ouvertes.fr/docs/00/67/67/05/PDF/Cebron_telluric.pdf
[74] Kivelson, M.G., Khurana, K.K. and Volwerk, M. (2002) The Permanent and Inductive Magnetic Moments of Ganymede. Icarus, 157, 507-522.
http://dx.doi.org/10.1006/icar.2002.6834
[75] Nimmo, F. and Watters, T.R. (2004) Depth of Faulting on Mercury: Implications for Heat Flux and Crustal and Effective Elastic Thickness. Geophysical Research Letters, 31, L02701.
http://dx.doi.org/10.1029/2003GL018847
[76] Sandel, B.R., Goldstein, J., Gallagher, D.L. and Spasojevic, M. (2003) Extreme Ultraviolet Imager Observations of the Structure and Dynamics of the Plasmasphere. Space Science Reviews, 109, 25-46.
http://dx.doi.org/10.1023/B:SPAC.0000007511.47727.5b
[77] Space Weather Camera Set for Launch in 2000.
http://science.nasa.gov/science-news/science-at-nasa/1999/ast16feb99_1/
[78] Gonnermann, H.M. and Mukhopadhyay, S. (2007) Non-Equilibrium Degassing and a Primordial Source for Helium in Ocean-Island Volcanism. Nature, 449, 1037-1040.
http://dx.doi.org/10.1038/nature06240
[79] Gonnermann, H.M. and Houghton, B.F. (2012) Magma Degassing during the Plinian Eruption of Novarupta, Alaska, 1912. Geochemistry, Geophysics, Geosystems, 13.
[80] Herndon, J.M. (2012) Hydrogen Geysers: Explanation for Observed Evidence of Geologically Recent Volatile-Related Activity on Mercury’s Surface. Current Science, 103, 361-362.