APM  Vol.4 No.9 , September 2014
The Freedom of Yetter-Drinfeld Hopf Algebras
Abstract: In this paper, the fundamental theorem of Yetter-Drinfeld Hopf module is proved. As applications, the freedom of tensor and twisted tensor of two Yetter-Drinfeld Hopf algebras is given. Let A be a Yetter-Drinfeld Hopf algebra. It is proved that the category of A-bimodule is equivalent to the category of   -twisted module.
Cite this paper: Wang, Y. (2014) The Freedom of Yetter-Drinfeld Hopf Algebras. Advances in Pure Mathematics, 4, 522-528. doi: 10.4236/apm.2014.49060.

[1]   Dascalescu, S., Nastasescu, C. and Raianu, S. (2001) Hopf Algebras; An Introduction. Marcel Dekker, Inc., New York.

[2]   Montgomery, S. (1993) Hopf Algebras and Their Actions on Rings. CBMS Regional Conf. Series in Math. 82, American Mathematical Society, Providence, RI.

[3]   Sweedler, M.E. (1969) Hopf Algebras. Benjamin, New York.

[4]   Yetter, D.N. (1990) Quantum Groups and Representation of Monoidal Categories. Mathematical Proceedings of the Cambridge Philosophical Society, 108, 261-290.

[5]   Sommerhauser, Y. (2002) Yetter-Drinfeld Hopf Algebras over Groups of Prime Order. Vol. 1789, Springer, Berlin.

[6]   Doi, Y. (2000) The Trace Formula for Braided Hopf Algebras. Communications in Algebra, 28, 1881-1895.

[7]   Doi, Y. (1998) Hopf Module in Yetter-Drinfeld Module Categories. Communications in Algebra, 26, 3057-3070.

[8]   Chen, H.X. and Zhang, Y. (2006) Four-Dimensional Yetter-Drinfeld Module Algebras. Journal of Algebra, 296, 582-634.

[9]   Zhu, H. and Chen H.X. (2012) Yetter-Drinfeld Modules over the Hopf-Ore Extension of Group Algebra of Dihedral Group. Acta Mathematica Sinca, 28, 487-502.

[10]   Alonso álvarez, J.N., Fernández Vilaboa, J.M., González Rodríguez, R. and Soneira Calvoar, C. The Monoidal Category of Yetter-Drinfeld Modules over a Weak Braided Hopf Algebra. arXiv: 1203.2474.