WJM  Vol.4 No.9 , September 2014
Efficient Simulation of Nonlinear Heat Transfer during Thermal Spraying of Complex Workpieces
ABSTRACT
The quality of coatings, produced by thermal spraying processes, considerably decreases with the occurrence of higher residual stresses, which are especially pronounced for complex workpiece geometries. To understand the occurring effects and to aid in the planning of coating processes, simulations of the highly transient energy flux of the HVOF spray gun into the substrate are of great value. In this article, a software framework for the simulation of nonlinear heat transfer during (HVOF) thermal spraying is presented. One part of this framework employs an efficient GPU-based simulation algorithm to compute the time-dependent input boundary conditions for a spray gun that moves along a complex workpiece of arbitrary shape. The other part employs a finite-element model for a rigid heat conductor adhering to the computed boundary conditions. The model is derived from the fundamental equations of continuum thermodynamics where nonlinear temperature-depending heat conduction is assumed.<

Cite this paper
Berthelsen, R. , Wiederkehr, T. , Denzer, R. , Menzel, A. and Müller, H. (2014) Efficient Simulation of Nonlinear Heat Transfer during Thermal Spraying of Complex Workpieces. World Journal of Mechanics, 4, 289-301. doi: 10.4236/wjm.2014.49029.
References
[1]   Trompeter, M., Franzen, V., Witulski, J. and Tekkaya, A.E. (2009) Thermisch beschichtete Werkzeuge für die Blechumformung. Der Schnitt-& Stanzwerkzeugbau, 5, 6-12.

[2]   Sahraoui, T., Fenineche, N.-E., Montavon, G. and Coddet, C. (2003) Structure and Wear Behaviour of HVOF Sprayed Cr3C2-NiCr and WC-Co Coatings. Materials & Design, 24, 309-313.
http://dx.doi.org/10.1016/S0261-3069(03)00059-1

[3]   Thorpe, M. and H.J., R. (1992) A Pragmatic Analysis and Comparison of HVOF Processes. Journal of Thermal Spray Technology, 1, 161-170.
http://dx.doi.org/10.1007/BF02659017

[4]   Fauchais, P., Vardelle, A. and Dussoubs, B. (2001) Quo Vadis Thermal Spraying? Journal of Thermal Spray Technology, 10, 44-66.
http://dx.doi.org/10.1361/105996301770349510

[5]   Coleman, B.D. and Noll, W. (1963) The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity. Archive for Rational Mechanics and Analysis, 13, 167-178.
http://dx.doi.org/10.1361/105996301770349510

[6]   Wiederkehr, T., Müller, H., Krebs, B. and Abdulgader, M. (2009) A Deposition Model for Wire Arc Spraying and Its Computationally Efficient Simulation. Proceedings of the International Thermal Spray Conference (ITSC), Las Vegas, 492-498.

[7]   Liu, I.-S. (2002) Continuum Mechanics. Springer, Berlin.

[8]   Atefi, G. and Talaee, M.R. (2011) Non-Fourier Temperature Field in a Solid Homogeneous Finite Hollow Cylinder. Archive of Applied Mechanics, 81, 569-583.
http://dx.doi.org/10.1007/s00419-010-0436-5

[9]   Talaee, M.R. and Atefi, G. (2011) Non-Fourier Heat Conduction in a Finite Hollow Cylinder with Periodic Surface Heat Flux. Archive of Applied Mechanics, 81, 1793-1806.
http://dx.doi.org/10.1007/s00419-011-0518-z

[10]   Lewis, R.W., Nithiarasu, P. and Seetharamu, K.N. (2004) Fundamentals of the Finite Element Method for Heat and Fluid Flow. Wiley, Hoboken and N.J.
http://dx.doi.org/10.1002/0470014164

[11]   Bergheau, J.M. and Fortunier, R. (2008) Finite Element Simulation of Heat Transfer. Wiley-ISTE, London.
http://dx.doi.org/10.1002/9780470611418

[12]   Kuhl, E., Denzer, R., Barth, F.J. and Steinmann, P. (2004) Application of the Material Force Method to Thermo-Hyperelasticity. Computer Methods in Applied Mechanics and Engineering, 193, 3303-3325.
http://dx.doi.org/10.1016/j.cma.2003.09.021

[13]   Vujicic, M.R. (2006) Finite Element Solution of Transient Heat Conduction Using Iterative Solvers. Engineering Computations, 23, 408-431.
http://dx.doi.org/10.1108/02644400610661172

[14]   Palani, G. and Kim, K.Y. (2010) Numerical Study on a Vertical Plate with Variable Viscosity and Thermal Conductivity. Archive of Applied Mechanics, 80, 711-725.
http://dx.doi.org/10.1007/s00419-009-0336-8

[15]   Gross, M. and Betsch, P. (2011) Galerkin-Based Energy-Momentum Consistent Time-Stepping Algorithms for Classical Nonlinear Thermo-Elastodynamics. Mathematics and Computers in Simulation, 82, 718-770.
http://dx.doi.org/10.1016/j.matcom.2011.10.009

[16]   Bonet, J. and Wood, R. (2008) Nonlinear Continuum Mechanics for Finite Element Analysis. 2nd Edition, Cambridge University Press, Cambridge.

[17]   De Borst, R., Crisfield, M., Remmers, R. and Verhoosel, C. (2012) Nonlinear Finite Element Analysis of Solids and Structures (Wiley Series in Computational Mechanics). Wiley, Hoboken.
http://dx.doi.org/10.1002/9781118375938

[18]   Comini, G., Del Guidice, S., Lewis, R.W. and Zienkiewicz, O.C. (1974) Finite Element Solution of Non-Linear Heat Conduction Problems with Special Reference to Phase Change. International Journal for Numerical Methods in Engineering, 8, 613-624.
http://dx.doi.org/10.1002/nme.1620080314

[19]   Argyris, J. (1982) An Excursion into Large Rotations. Computer Methods in Applied Mechanics and Engineering, 32, 85-155.
http://dx.doi.org/10.1016/0045-7825(82)90069-X

[20]   Betsch, P., Menzel, A. and Stein, E. (1998) On the Parametrization of Finite Rotations in Computational Mechanics: A Classification of Concepts with Application to Smooth Shells. Computer Methods in Applied Mechanics and Engineering, 155, 273-305. http://dx.doi.org/10.1016/S0045-7825(97)00158-8

[21]   Altmann, S.L. (2005) Rotations, Quaternions, and Double Groups. Dover Books on Mathematics. Dover Publications, Mineola.

[22]   Shoemake, K. (1985) Animating Rotation with Quaternion Curves. SIGGRAPH Computer Graphics, 19, 245-254.
http://dx.doi.org/10.1145/325165.325242

[23]   Catmull, E.E. (1974) A Subdivision Algorithm for Computer Display of Curved Surfaces. Ph.D. Dissertation, The University of Utah, Salt Lake City.

[24]   Richter, F. (1973) Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen: Mitteilung aus dem Forschungsinstitut der Mannesmann AG. Verl. Stahleisen, Düsseldorf.

[25]   Richter, F. (1983) Physikalische Eigenschaften von Stahlen und ihre Temperaturabhangigkeit: Polynome und graphische Darstellungen. Stahleisen, Düsseldorf.

[26]   Kout, A. and Müller, H. (2009) Parameter Optimization for Spray Coating. Advances in Engineering Software, 40, 1078-1086.
http://dx.doi.org/10.1016/j.advengsoft.2009.03.001

[27]   Baek, S. and Srinivasa, A.R. (2003) Thermomechanical Constraints and Constitutive Formulations in Thermoelasticity. Mathematical Problems in Engineering, 2003, 153-171.
http://dx.doi.org/10.1155/S1024123X03212011

[28]   Boehmer, J., Funk, G., Jordan, M. and Fett, F. (1998) Strategies for Coupled Analysis of Thermal Strain History during Continuous Solidification Processes. Advances in Engineering Software, 29, 679-697.
http://dx.doi.org/10.1016/S0965-9978(98)00033-7

[29]   Fagerstrom, M. and Larsson, R. (2008) A Thermo-Mechanical Cohesive Zone Formulation for Ductile Fracture. Journal of the Mechanics and Physics of Solids, 56, 3037-3058.
http://dx.doi.org/10.1016/j.jmps.2008.06.002

 
 
Top