JBNB  Vol.2 No.3 , July 2011
Unbinding Process of Amelogenin and Fibrinogen Adsorbed on Different Solid Surfaces Using AFM
Abstract: The interaction of proteins with solid surfaces is a fundamental phenomenon in the biomaterials field. We investigated, using atomic force microscopy (AFM), the interactions of a recombinant amelogenin with titanium, a biphasic calcium phosphate (BCP) and mica. The unbinding processes were compared to those of an earlier studied protein, namely fibrinogen. Force spectroscopy (AFM) experiments were carried out at 0 ms, 102 ms, 103 ms and 104 ms of contact time. In general, the rupture forces increased as a function of interaction time. The unbinding forces of amelogenin interacting with the BCP surface were always stronger than those of the amelogenin-titanium system. The unbinding forces of fibrinogen interacting with the BCP surface were always much stronger than those of the fibrinogen-titanium system. For the most part, this study provides direct evidence that recombinant amelogenin binds more strongly than fibrinogen on the studied substrates.
Cite this paper: nullL. Richert, A. Boukari, S. Berner, M. Dard and J. Hemmerlé, "Unbinding Process of Amelogenin and Fibrinogen Adsorbed on Different Solid Surfaces Using AFM," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 3, 2011, pp. 244-249. doi: 10.4236/jbnb.2011.23031.

[1]   J. J. Gray, “The interaction of proteins with solid surfaces,” Curr Opin Struct Biol, Vol. 14, 2004, pp. 110-115.

[2]   S. Faghihi, F. Azari, H. Li, M. R. Bateni, J. A. Szpunar, H. Vali, M. Tabrizian, “The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses,” Biomaterials, Vol. 27, 2006, pp. 3532-3539.

[3]   A. G. Fincham, J. Moradian-Oldack, J. P. Simmer, “The structural biology of the developing dental enamel matrix,” J Struct Biol, Vol. 126, 1999, pp. 270-299.

[4]   J. Moradian-Oldak, “Amelogenins: assembly, processing and control of crystal morphology,” Matrix boil, Vol. 20, 2001, pp. 293-305.

[5]   L. Richert, F. Variola, F. Rosei, J. Wuest, A. Nanci, “Adsorption of proteins on nanoporous Ti surfaces,” Surface Science, Vol. 604, 2010, pp. 1445-1451.

[6]   H. Zhou, T. Wu, X. Dong, Q. Wang, J. Shen, “Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces,” Biochem Biophys Res Commun, Vol. 361, 2007, pp. 91-96.

[7]   R. Goobes, G. Goobes, C. T. Campbell, P. S. Stayton, “Thermodynamics of statherin adsorption onto hydroxyapatite,” Biochemistry, Vol. 45, 2006, pp. 5576- 5586.

[8]   J. Hemmerlé, F. J. G. Cuisinier, P. Schultz, J.-C. Voegel, “HRTEM study of biological crystal growth mechanisms in the vicinity of implanted synthetic hydroxyapatite crystals,” J Dent Res, Vol. 76, 1997, pp. 682-687.

[9]   J. Hemmerlé, A. ?n?ag, S. Ertürk, “Ultrastructural features of the bone response to a plasma-sprayed hydroxyapatite coating in sheep,” J Biomed Mater Res, Vol. 36, No. 3, 1997, pp. 418-425.

[10]   K. Kandori, N. Horigami, H. Kobayashi, A. Yasukawa, T. Ishikawa, “Adsorption of lysozyme onto various synthetic hydroxyapatites,” J Colloid Interf Sci, Vol. 191, 1997, pp. 498-502.

[11]   Q. Q. Hoang, F. Sicheri, A.J. Howard, D.S. Yang, “Bone recognition mechanism of porcine osteocalcin from crystal structure,” Nature, Vol. 425, 2003, pp. 977-980.

[12]   C.M. Yip, “Atomic force microscopy of macromolecular interactions,” Curr Opin Struct Biol, Vol. 11, 2001, pp. 567-572.

[13]   S. M. Slack, T. A. Horbett, “Changes in the strength of fibrinogen attachment to solid surfaces: an explanation of the influence of surface chemistry on the Vroman effect,” J Colloid and Interface Science, Vol. 133, 1989, pp. 148-65.

[14]   J. Hemmerlé, S. M. Altmann, M. Maaloum, J. K. H. H?rber, L. Heinrich, J.-C. Voegel, P. Schaaf, “Direct observation of the anchoring process during the adsorption of fibrinogen on a solid surface by force-spectroscopy mode atomic force microscopy,” Proc Natl Acad Sci USA, Vol. 96, 1999, pp. 6705-6710.

[15]   A. Boukari, G. Francius, J. Hemmerlé, “AFM force spectroscopy of the fibrinogen adsorption process onto dental implants,” J Biomed Mater Res A, Vol. 78,: 2006, pp. 466-472.

[16]   T. Thundat, R. J. Warmack, G. Y. Chen, D. P. Allison, “Thermal and ambient-induced deflections of scanning force microscope cantilevers,” Applied Physics Letters, Vol. 64, 1994, pp. 2894-2896.

[17]   J. Svensson. C. Andersson., J. E. Reseland, P. Lyngstadaas, L. Bülow, “Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli,” Protein Expr Purif, Vol. 48, 2006, pp. 134-141.

[18]   G. J?nchen, M. Mertig, W. Pompe, “Adhesion energy of thin collagen coatings and titanium,” Surf and Interface Anal, Vol. 27, 1999, pp. 444-449.

[19]   C. Gergely, J.-C. Voegel, P. Schaaf, B. Senger, M. Maaloum, J. K. H. H?rber, J. Hemmerlé, “Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy,” Proc Natl Acad Sci USA , Vol. 97, No. 20, 2000, pp. 10802-10807.

[20]   J. Hemmerlé, C. Picart, C. Gergely, P. Schaaf, J.-F. Stoltz, J.-C. Voegel, B. Senger, “Modeling of the detachment of a molecule from a surface: Illustration of the “Bell-Evans effect”, Biorheology, Vol. 40, 2003, pp. 149-160.

[21]   A. G. Fincham, J. Moradian-Oldack, T. G. Diekwish, D. M. Layaruu, J. T. Wright, P. Bringas, “Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix,” J Struct Biol, Vol. 115, 1995, pp. 50-59.

[22]   J. Moradian-Oldak, N. Bouropoulos, L. Wang, N. Gharakhanian, “Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal,” Matrix biol, Vol. 21, 2002, pp. 197-205.

[23]   C. Du, G. Falini, S. Fermani, C. Abbott, J. Moradian-Oldak, “Supramolecular assembly of amelogenin nanospheres into birefringent microribbons,” Science, Vol. 307, 2005, pp. 1450-1454.

[24]   X. He, W. Li, S. Habelitz, “The cooperative self-assembly of 25 and 23 kDa amelogenins,” J Struct Biol, Vol. 164, 2008, pp. 314-321.

[25]   F. B. Wiedemann-Bidlack, E. Beniash, Y. Yamakoshi, J. P. Simmer, H. C. Margolis, “pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro,” J Struct Biol, Vol. 160:, 2007, pp. 57-69.