[1] Kabuki, T., Nakajima, H., Arai, M., et al. (2000) Characterization of Novel Antimicrobial Compounds from Mango (Mangifera indica L.) Kernel Seeds. Food Chemistry, 71, 61-66.
http://dx.doi.org/10.1016/S0308-8146(00)00126-6
[2] Wangensteen, H., Samuelsen, A.B. and Malterud, K.E. (2004) Antioxidant Activity in Extracts from Coriander. Food Chemistry, 88, 293-297.
http://dx.doi.org/10.1016/j.foodchem.2004.01.047
[3] Borchardt, J.R., Wyse, D.L., Sheaffer, et al. (2009) Antioxidant and Antimicrobial Activity of Seed from Plants of the Mississippi River Basin. Journal of Medicinal Plants Research, 3, 707-718.
[4] Quan, C., Yao, H. and Hou, C. (2013) Certification and Uncertainty Evaluation of Flavonoids Certified Reference Materials. Agricultural Sciences, 4, 89-96.
http://dx.doi.org/10.4236/as.2013.49B016
[5] Cai, Y., Luo, Q., Sun, M., et al. (2004) Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sciences, 74, 2157-2184.
http://dx.doi.org/10.1016/j.lfs.2003.09.047
[6] Komutarin, T., Azadi, S., Butterworth, L., et al. (2004) Extract of the Seed Coat of Tamarindus indica Inhibits Nitric Oxide Production by Murine Macrophages in Vitro and in Vivo. Food and Chemical Toxicology, 42, 649-658.
http://dx.doi.org/10.1016/j.fct.2003.12.001
[7] Comai, S., Bertazzo, A., Bailoni, L., et al. (2007) The Content of Proteic and Nonproteic (Free and Protein-Bound) Tryptophan in Quinoa and Cereal Flours. Food Chemistry, 100, 1350-1355.
http://dx.doi.org/10.1016/j.foodchem.2005.10.072
[8] Gely, MC. and Santalla, E. (2007) Moisture Diffusivity in Quinoa (Chenopodium quinoa Willd.) Seeds: Effect of Air Temperature and Initial Moisture Content of Seeds. Journal of Food Enginnering, 78, 1029-1033.
http://dx.doi.org/10.1016/j.jfoodeng.2005.12.015
[9] Ruiz, K.B, Biondi, S., Oses, R., et al. (2013) Quinoa, Its Biodiversity and Crop Sustainability as Key Contributions towards World Food Security in the Face of Climate Change. Agronomy for Sustainable Development, 34, 349-359.
http://dx.doi.org/10.1007/s13593-013-0195-0
[10] Juneja, V.K., Dwivedi, H.P. and Yan, X. (2012) Novel Natural Food Antimicrobials. Annual Review of Food Science and Technology, 3, 381-403.
http://dx.doi.org/10.1146/annurev-food-022811-101241
[11] Wright, K.H., Pike, O.A., Fairbanks, D.J. and Huber, C.S. (2002) Composition of Atriplex hortensis, Sweet and Bitter Chenopodium quinoa Seeds. Journal of Food Science, 67, 1383-1385.
[12] Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K. and Gallagher, E. (2010) Polyphenol Composition and in Vitro Antioxidant Activity of Amaranth, Quinoa, Buckwheat and Wheat as Affected by Sprouting and Baking. Food Chemistry, 119, 770-778.
http://dx.doi.org/10.1016/j.foodchem.2009.07.032
[13] Hassan, S.M., Haq, A.U., Byrd, J.A., Berhowd, M.A., Cartwrightb, A.L. and Bailey, C.A. (2010) Haemolytic and Antimicrobial Activities of Saponin-Rich Extracts from Guar Meal. Food Chemistry, 119, 600-605.
http://dx.doi.org/10.1016/j.foodchem.2009.06.066
[14] Deba, F., Xuan, T.D., Yasuda, M. and Tawata, S. (2008) Chemical Composition and Antioxidant, Antibacterial and Antifungal Activities of the Essential Oils from Bidens pilosa Linn. var. Radiata. Food Control, 19, 346-352.
http://dx.doi.org/10.1016/j.foodcont.2007.04.011
[15] AOAC (1990) Official Method of Analysis. 15th Edition, Association of Official Analytical Chemists, Washington DC.
[16] Khoobchandani, M., Ojeswi, B.K., Ganesh, N., Srivastava, M.M., Gabbanini, S., Matera, R., et al. (2010) Antimicrobial Properties and Analytical Profile of Traditional Eruca sativa Seed Oil: Comparison with Various Aerial and Root Plant Extracts. Food Chemistry, 120, 217-224.
http://dx.doi.org/10.1016/j.foodchem.2009.10.011
[17] Chuah, A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J. and Matoba, T. (2008) Effect of Cooking on the Antioxidant Properties of Coloured Peppers. Food Chemistry, 111, 20-28.
http://dx.doi.org/10.1016/j.foodchem.2008.03.022
[18] Jia, Z., Tang, M. and Wu, J. (1999) The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chemistry, 64, 555-559.
http://dx.doi.org/10.1016/S0308-8146(98)00102-2
[19] Liu, S.C., Lin, J.T., Wang, C.K., Chen, H.Y. and Yang D.J., (2009) Antioxidant Properties of Various Solvent Extracts from Lychee (Litchi chinenesis Sonn.) Flowers. Food Chemistry, 114, 577-581.
http://dx.doi.org/10.1016/j.foodchem.2008.09.088
[20] Madl, T., Sterk, H., Mittelbach, M. and Rechberger, G.N. (2006) Tandem Mass Spectrometric Analysis of a Complex Triterpene Saponin Mixture of Chenopodium quinoa. Journal of the American Society for Mass Spectrometry, 17, 795-806.
http://dx.doi.org/10.1016/j.jasms.2006.02.013
[21] Martín, R.S. and Briones, R. (2000) Quality Control of Commercial Quillaza (Quillaja saponaria Molina) Extracts by Reverse Phase HPLC. Journal of the Science of Food and Agriculture, 80, 2063-2068.
[22] Repo-Carrasco-Valencia, R., Hellströmb, J.K., Pihlavac, J.M. and Mattila, P.H. (2010) Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Kañiwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chemistry, 120, 128-133.
http://dx.doi.org/10.1016/j.foodchem.2009.09.087
[23] Miranda, M., Vega-Gálvez, A., Quispe-Fuentes, I., Rodríguez, M.J., Maureira, H. and Martínez, E.A. (2012) Nutritional Aspects of Six Quinoa (Chenopodium quinoa Willd.) Seeds from Three Geographical Areas of Chile. Chilean Journal of Agricultural Research, 72, 175-181.
http://dx.doi.org/10.4067/S0718-58392012000200002
[24] Jancurová, M., Minarovicová, L. and Dandár, A. (2009) Quinoa-A Review. Czech Journal of Food Science, 27, 71-79.
[25] Oliveira, I., Sousa, A., Ferreira, I., Bento, A., Estevinho, L. and Pereira, J.A. (2008) Total Phenols, Antioxidant Potential and Antimicrobial Avtivity of Walnut (Juglans regia L.) Green Husks. Food and Chemical Toxicology, 46, 2326-2331.
http://dx.doi.org/10.1016/j.fct.2008.03.017
[26] Al-Zoreky, N.S. (2009) Antimicrobial Activity of Pomegranate (Punica granatum L.) Fruit Peels. International Journal of Food Microbiology, 134, 244-248.
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.002
[27] Zeng, W.C., Jia, L.R., Zhang, Y., Cen, J.Q., Chen, X., Gao, H., et al. (2011) Antibrowning and Antimicrobial Activities of the Water-Soluble Extract from Pine Needles of Cedrus deodara. Journal of Food Science, 76, C318-C123.
[28] Keskin, D. and Toroglu, S. (2011) Studies on Antimicrobial Activities of Solvent Extracts of Different Species. Journal of Environmental Biology, 32, 251-256.
[29] Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., et al. (2010) Impact of Air-Drying Temperature on Nutritional Properties, Total Phenolic Content and Antioxidant Capacity of Quinoa Seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32, 258-263. http://dx.doi.org/10.1016/j.indcrop.2010.04.019
[30] Shan, B., Cai, Y.Z., Brooks, J. and Corke, H. (2007) The in Vitro Antibacterial Activity of Dietary Species and Medicinal Herb Extracts. International Journal of Food Microbiology, 117, 112-119.
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.003
[31] Kalogeropoulos, N., Konteles, S.J., Troullidou, E., Mourtzinos, I. and Karathanos, V.T. (2009) Chemical Composition, Antioxidant Activity and Antimicrobial Properties of Propolis Extracts from Greece and Cyprus. Food Chemistry, 116, 452-461.
http://dx.doi.org/10.1016/j.foodchem.2009.02.060
[32] Fuentes, F., Martínez, E. A., Hinrichsen, P., Jellen, E.N. and Maughan, P.J. (2009) Assessment of Genetic Diversity Patterns in Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm Using Multiplex Flourescent Microsatellites Markers. Conservation Genetics, 10, 369-377.
http://dx.doi.org/10.1007/s10592-008-9604-3