ACS  Vol.4 No.4 , October 2014
Assessment of the 2006-2012 Climatological Fields and Mesoscale Features from Regional Downscaling of CESM Data by WRF-Chem over Southeast Alaska
ABSTRACT
This case study examined how well downscaling of Community Earth System Model (CESM) data can reproduce climatological conditions relevant for summer (JJA) air quality in Glacier Bay National Park. Climatology was determined from the meteorological results obtained by the Weather Research and Forecasting model inline coupled with chemistry (WRF-chem) when driven with CESM data of 2006-2012. The climatology of this experiment (EXP) was evaluated by climatology from gridded blended sea-wind speeds, CRU data, and 42 surface meteorology sites. The quality relative to known performance was assessed by comparison to climatology determined from WRF-chem control simulations driven with FNL analysis data (CON) in forecast mode. Compared to observations, the thermodynamic and dynamic performances of EXP showed similar shortcomings (dampened diurnal temperature range, overestimation of wind speed over land) as CON. Over water EXP wind-speed climatology JJA bias (simulated minus observed) was -0.7 m/s. With respect to the CRU data EXP biases in JJA 2m temperature, diurnal temperature range, relative humidity and accumulated precipitation were -1.1 K, -4.9 K, 13%, and 110 mm, respectively. The slightly warmer atmosphere in EXP compensated for deficiencies in the cloud schemes leading to better results for the number of wet days and accumulated precipitation than in CON. Downscaling captured known mesoscale responses important for regional climate in a similar way as CON. When using CESM forcing, lateral boundary effects expanded spatially farther into the domain than known for forcing by analysis data. Overall, climatologies obtained from downscaling for Southeast Alaska had similar skill than those derived from forecasts driven by analysis data.

Cite this paper
Mölders, N. , Bruyère, C. , Gende, S. , Pirhalla, M. (2014) Assessment of the 2006-2012 Climatological Fields and Mesoscale Features from Regional Downscaling of CESM Data by WRF-Chem over Southeast Alaska. Atmospheric and Climate Sciences, 4, 589-613. doi: 10.4236/acs.2014.44053.
References
[1]   Molders, N., Gende, S. and Pirhalla, M.A. (2013) Assessment of Cruise-Ship Activity Influences on Emissions, Air Quality, and Visibility in Glacier Bay National Park. Atmospheric Pollution Research, 4, 435-445. http://dx.doi.org/10.5094/APR.2013.050

[2]   Molders, N. and Kramm, G. (2014) Lectures in Meteorology. Springer, Heidelberg, 591.

[3]   Seinfeld, J.H. and Pandis, S.N. (1997) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Wiley, New York.

[4]   Real, E. and Sartelet, K. (2011) Modeling of Photolysis Rates over Europe: Impact on Chemical Gaseous Species and Aerosols. Atmosphere Chemistry Physics, 11, 1711-1727.
http://dx.doi.org/10.5194/acp-11-1711-2011

[5]   Zhang, Y., Hu, X.M., Leung, L.R. and Gustafson, W.I. (2008) Impacts of Regional Climate Change on Biogenic Emissions and Air Quality. Journal of Geophysical Research: Atmospheres, 113, Published Online. http://dx.doi.org/10.1029/2008JD009965

[6]   Spracklen, D.V., Mickley, L.J., Logan, J.A., Hudman, R.C., Yevich, R., Flannigan, M.D. and Westerling, A.L. (2009) Impacts of Climate Change from 2000 to 2050 on Wildfire Activity and Carbonaceous Aerosol Concentrations in the Western United States. Journal of Geophysical Research: Atmospheres, 114, Published Online. http://dx.doi.org/10.1029/2008JD010966

[7]   Fang, Y., Fiore, A.M., Horowitz, L.W., Gnanadesikan, A., Held, I., Chen, G., Vecchi, G. and Levy, H. (2011) The Impacts of Changing Transport and Precipitation on Pollutant Distributions in a Future Climate. Journal of Geophysical Research: Atmospheres, 116, Published Online.
http://dx.doi.org/10.1029/2011JD015642

[8]   Menut, L., Tripathi, O., Colette, A., Vautard, R., Flaounas, E. and Bessagnet, B. (2013) Evaluation of Regional Climate Simulations for Air Quality Modelling Purposes. Climate Dynamics, 40, 2515-2533. http://dx.doi.org/10.1007/s00382-012-1345-9

[9]   McKeen, S., Grell, G., Peckham, S., Wilczak, J., Djalalova, I., Hsie, E.Y., Frost, G., Peischl, J., Schwarz, J., Spackman, R., Holloway, J., De Gouw, J., Warneke, C., Gong, W., Bouchet, V., Gaudreault, S., Racine, J., Mchenry, J., McQueen, J., Lee, P., Tang, Y., Carmichael, G.R. and Mathur, R. (2009) An Evaluation of Real-Time Air Quality Forecasts and Their Urban Emissions over Eastern Texas during the Summer of 2006 Second Texas Air Quality Study Field Study. Journal of Geophysical Research: Atmospheres, 114, Published Online. http://dx.doi.org/10.1029/2008JD011697

[10]   D’Allura, A., Kulkarni, S., Carmichael, G.R., Finardi, S., Adhikary, B., Wei, C., Streets, D., Zhang, Q., Pierce, R.B., Al-Saadi, J.A., Diskin, G. and Wennberg, P. (2011) Meteorological and Air Quality Forecasting Using the WRF-STEM Model During the 2008 ARCATS Field Campaign. Atmospheric Environment, 45, 6901-6910. http://dx.doi.org/10.1016/j.atmosenv.2011.02.073

[11]   Pierce, T., Hogrefe, C., Rao, S.T., Porter, P.S. and Ku, J.Y. (2010) Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle. Atmospheric Environment, 44, 3583-3596. http://dx.doi.org/10.1016/j.atmosenv.2010.05.046

[12]   Molders, N., Tran, H.N.Q., Cahill, C.F., Leelasakultum, K. and Tran, T.T. (2012) Assessment of WRF/Chem PM2.5 Forecasts Using Mobile and Fixed Location Data from the Fairbanks, Alaska Winter 2008/09 Field Campaign. Atmospheric Pollution Research, 3, 180-191.
http://dx.doi.org/10.5094/APR.2012.018

[13]   Van Loon, M., Vautard, R., Schaap, M., Bergstrom, R., Bessagnet, B., Brandt, J., Builtjes, P.J.H., Christensen, J.H., Cuvelier, C., Graff, A., Jonson, J.E., Krol, M., Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrasón, L., Thunis, P., Vignati, E., White, L. and Wind, P. (2007) Evaluation of Long-Term Ozone Simulations from Seven Regional Air Quality Models and Their Ensemble. Atmospheric Environment, 41, 2083-2097. http://dx.doi.org/10.1016/j.atmosenv.2006.10.073

[14]   Yu, S., Mathur, R., Schere, K., Kang, D., Pleim, J. and Otte, T.L. (2007) A Detailed Evaluation of the Eta-CMAQ Forecast Model Performance for O3, Its Related Precursors, and Meteorological Parameters During the 2004 ICARTT Study. Journal of Geophysical Research: Atmosphere, 112, Published Online. http://dx.doi.org/10.1029/2006JD007715

[15]   Vivanco, M., Palomino, I., Martín, F., Palacios, M., Jorba, O., Jiménez, P., Baldasano, J. and Azula, O. (2009) An Evaluation of the Performance of the CHIMERE Model over Spain Using Meteorology from MM5 and WRF Models. Proceeding of Computational Science and Its Applications, Seoul, 29 June-2 July 2009, 107-117.

[16]   Zhang, Y., Dubey, M.K., Olsen, S.C., Zheng, J. and Zhang, R. (2009) Comparisons of WRF/Chem Simulations in Mexico City with Ground-Based Rama Measurements during the 2006-MILAGRO. Atmosphere Chemistry Physics, 9, 3777-3798. http://dx.doi.org/10.5194/acp-9-3777-2009

[17]   Wu, Q., Wang, Z., Chen, H., Zhou, W. and Wenig, M. (2012) An Evaluation of Air Quality Modeling over the Pearl River Delta during November 2006. Meteorology and Atmospheric Physics, 116, 113-132. http://dx.doi.org/10.1007/s00703-011-0179-z

[18]   Appel, K., Roselle, S., Gilliam, R. and Pleim, J. (2010) Sensitivity of the Community Multiscale Air Quality (CMAQ) Model V4.7 Results for the Eastern United States to MM5 and WRF Meteorological Drivers. Geoscience Model Development, 3, 169-188. http://dx.doi.org/10.5194/gmd-3-169-2010

[19]   Molders, N., Tran, H.N.Q., Quinn, P., Sassen, K., Shaw, G.E. and Kramm, G. (2011) Assessment of WRF/Chem to Capture Sub-Arctic Boundary Layer Characteristics during Low Solar Irradiation Using Radiosonde, Sodar, and Station Data. Atmospheric Pollution Research, 2, 283-299.
http://dx.doi.org/10.5094/APR.2011.035

[20]   Vautard, R., Solazzo E, Gilliam, R., Matthias, V., Bianconi, R., Ferreira, J., Geyer, B., Hansen, A., Jericevic, A., Prank, M., Segers, A., Silver, J.D., Werhahn, J., Wolke, R., Rao, S.T. and Galmarini, S. (2012) Evaluation of the Meteorological Forcing Used for the Air Quality Model Evaluation International Initiative (AQMEII) Air Quality Simulations. Atmospheric Environment, 53, 15-37. http://dx.doi.org/10.1016/j.atmosenv.2011.10.065

[21]   Done, J.M., Holland, G.M., Bruyère, C.L., Leung, L.R. and Suzuki-Parker, A. (2013) Modeling High Impact Weather and Climate: Lessons from a Tropical Cyclone Perspective. Climate Change, Published Online. http://dx.doi.org/10.1007/s10584-013-0954-6

[22]   Paeth, H. and Mannig, B. (2013) On the Added Value of Regional Climate Modeling in Climate Change Assessment. Climate Dynamics, 41, 1057-1066. http://dx.doi.org/10.1007/s00382-012-1517-7

[23]   Pfister, G.G., Walters, S., Lamarque, J.F., Fast, J., Barth, M.C., Wong, J., Done, J., Holland, G. and Bruyère, C.L. (2014) Projections of Future Summertime Ozone over the US. Journal of Geophysical Research: Atmosphere, 119, 5559-5582. http://dx.doi.org/10.1002/2013JD020932

[24]   PaiMazumder, D. and Molders, N. (2009) Theoretical Assessment of Uncertainty in Regional Averages Due to Network Density and Design. Journal of Applied Meteorology and Climatology, 48, 1643-1666. http://dx.doi.org/10.1175/2009JAMC2022.1

[25]   Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical Note, 125p.

[26]   Caldwell, P., Chin, H.N., Bader, D. and Bala, G. (2009) Evaluation of a WRF Dynamical Downscaling Simulation over California. Climatic Change, 95, 499-521. http://dx.doi.org/10.1007/s10584-009-9583-5

[27]   Gao, Y., Fu, J.S., Drake, J.B., Liu, Y. and Lamarque, J.F. (2012) Projected Changes of Extreme Weather Events in the Eastern United States Based on a High Resolution Climate Modeling System. Environmental Research Letters, 7, Article ID: 044025.

[28]   Peckham, S.E., Fast, J., Schmitz, R., Grell, G.A., Gustafson, W.I., Mckeen, S.A., Ghan, S.J., Zaveri, R., Easter, R.C., Barnard, J., Chapman, E., Salzman, M., Barth, M., Pfister, G., Wiedinmyer, C., Hewson, M. and Freitas, S.R. (2011) WRF/Chem Version 3.3 User’s Guide. ESSL Technical Note, p. 96.

[29]   Grell, G.A., Freitas, S.R., Stuefer, M. and Fast, J.D. (2011) Inclusion of Biomass Burning in WRF-Chem: Impact on Wildfires on Weather Forecasts. Atmosphere Chemistry Physics, 11, 5289-5303.
http://dx.doi.org/10.5194/acp-11-5289-2011

[30]   Lamarque, J.F., Emmons, L.K., Hess, P.G., Kinnison, D.E., Tilmes, S., Vitt, F., Heald, C.L., Holland, E.A., Lauritzen, P.H., Neu, J., Orlando, J.J., Rasch, P.J. and Tyndall, G.K. (2012) CAM-Chem: Description and Evaluation of Interactive Atmospheric Chemistry in the Community Earth System Model. Geoscience Model Development, 5, 369-411. http://dx.doi.org/10.5194/gmd-5-369-2012

[31]   Meehl, G.A., Washington, W.M., Arblaster, J.M., Hu, A., Teng, H., Kay, J.E., Gettelman, A., Lawrence, D.M., Sanderson, B.M. and Strand, W.G. (2013) Climate Change Projections in CESM1(CAM5) Compared to CCSM4. Journal of Climate, 26, 6287-6308. http://dx.doi.org/10.1175/JCLI-D-12-00572.1

[32]   Hines, K.M. and Bromwich, D.H. (2008) Development and Testing of Polar Weather Research and Forecasting (WRF) Model. Part I: Greenland Ice Sheet Meteorology. Monthly Weather Review, 136, 1971-1989. http://dx.doi.org/10.1175/2007MWR2112.1

[33]   Liu, X.H., Zhang, Y., Olsen, K.M., Wang, W.X., Do, B.A. and Bridgers, G.M. (2010) Responses of Future Air Quality to Emission Controls over North Carolina, Part I: Model Evaluation for Current-Year Simulations. Atmospheric Environment, 44, 2443-2456.
http://dx.doi.org/10.1016/j.atmosenv.2010.04.002

[34]   Lindvall, J., Svensson, G. and Hannay, C.E. (2013) Evaluation of Near-Surface Parameters in the Two Versions of the Atmospheric Model in CESM1 Using Flux Station Observations. Journal of Climate, 26, 26-44. http://dx.doi.org/10.1175/JCLI-D-12-00020.1

[35]   Hong, S.Y. and Lim, J.O.J. (2006) The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Journal Korean Meteorological Society, 42, 129-151.

[36]   Grell, G.A. and Dévényi, D. (2002) A Generalized Approach to Parameterizing Convection. Geophysical Research Letters, 29, 381-384.

[37]   Chou, M.D. and Suarez, M.J. (1994) An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Technical Memorandum 104606, 3, 85.
https://archive.org/details/nasa_techdoc_19950009331

[38]   Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A. (1997) Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-K Model for the Longwave. Journal of Geophysical Research, 102D, 16663-16682. http://dx.doi.org/10.1029/97JD00237

[39]   Barnard, J., Fast, J., Paredes-Miranda, G., Arnott, W. and Laskin, A. (2010) Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module Using Data from the Milagro Campaign. Atmospheric Chemistry Physics, 10, 7325-7340. http://dx.doi.org/10.5194/acp-10-7325-2010

[40]   Janjic, Z.I. (2002) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Technical Note 437, 61p.

[41]   Chen, F. and Dudhia, J. (2000) Coupling an Advanced Land-Surface / Hydrology Model with the Penn State/NCAR MM5 Modeling System. Part I: Model Description and Implementation. Monthly Weather Review, 129, 569-585. http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

[42]   Stockwell, W.R., Middleton, P., Chang, J.S. and Tang, X. (1990) The Second-Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling. Journal Geophysical Research, 95, 16343-16367. http://dx.doi.org/10.1029/JD095iD10p16343

[43]   Madronich, S. (1987) Photodissociation in the Atmosphere, 1, Actinic Flux and the Effects of Ground Reflections and Clouds. Journal Geophysical Research, 92, 9740-9752.
http://dx.doi.org/10.1029/JD092iD08p09740

[44]   Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S. and Shankar, U. (1998) Modal Aerosol Dynamics Model for Europe: Development and First Applications. Atmospheric Environment, 32, 2981-2299. http://dx.doi.org/10.1016/S1352-2310(98)00006-5

[45]   Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S. and Ebel, A. (2001) Modeling the Formation of Secondary Organic Aerosol within a Comprehensive Air Quality Model System. Journal Geophysical Research, 106, 28275-28293. http://dx.doi.org/10.1029/2001JD000384

[46]   Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W., Pierce, T. and Zimmerman, P.R. (1994) A Global Model of Natural Volatile Organic Compound Emissions. Journal Geophysical Research, 100D, 8873-8892.

[47]   NCEP (2000) NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. http://dx.doi.org/10.5065/D6M043C6

[48]   Community Climate System Model/Climate and Global Dynamics Division/National Center for Atmospheric Research/University Corporation for Atmospheric Research (2011) NCAR Community Earth System Model, EASM Project Dataset. NCAR Technical Note.
http://dx.doi.org/10.5065/D6TH8JP5

[49]   Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.F., Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M. and Vuuren, D.P.P. (2011) The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300. Climatic Change, 109, 213-241. http://dx.doi.org/10.1007/s10584-011-0156-z

[50]   Keppel-Aleks, G., Randerson, J.T., Lindsay, K., Stephens, B.B., Moore, J.K., Doney, S.C., Thornton, P.E., Mahowald, N.M., Hoffman, F.M., Sweeney, C., Tans, P.P., Wennberg, P.O. and Wofsy, S.C. (2013) Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 26, 4447-4475. http://dx.doi.org/10.1175/JCLI-D-12-00589.1

[51]   PaiMazumder, D., Miller, J., Li, Z., Walsh, J.E., Etringer, A., McCreight, J., Zhang, T. and Molders, N. (2008) Evaluation of Community Climate System Model Soil Temperatures Using Observations from Russia. Theoretical and Applied Climatology, 94, 187-213. http://dx.doi.org/10.1007/s00704-007-0350-0

[52]   Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H. (2013) Updated High-Resolution Grids of Monthly Climatic Observations—The CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642.

[53]   Zhang, H.M., Bates, J.J. and Reynolds, R.W. (2006) Assessment of Composite Global Sampling: Sea Surface Wind Speed. Geophysical Research Letters, 33, Published Online.
http://dx.doi.org/10.1029/2006GL027086

[54]   Chuang, M.T., Zhang, Y. and Kang, D. (2011) Application of WRF/Chem-Madrid for Real-Time Air Quality Forecasting over the Southeastern United States. Atmospheric Environment, 45, 6241-6250. http://dx.doi.org/10.1016/j.atmosenv.2011.06.071

[55]   Kukkonen, J., Olsson, T., Schultz, D., Baklanov, A., Klein, T., Miranda, A.I., Monteiro, A., Hirtl, M., Tarvainen, V., Boy, M., Peuch, V.H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev, M., Sokhi, R., Lehtinen, K.E.J., Karatzas, K., Jos, R.S., Astitha, M., Kallos, G., Schaap, M., Reimer, E., Jakobs, H. and Eben, K. (2012) A Review of Operational, Regional-Scale, Chemical Weather Forecasting Models in Europe. Atmosphere Chemistry Physics, 12, 1-87. http://dx.doi.org/10.5194/acp-12-1-2012

[56]   Kim, J., Waliser, D.E., Mattmann, C.A., Mearns, L.O., Goodale, C.E., Hart, A.F., Crichton, D.J., Mcginnis, S., Lee, H., Loikith, P.C. and Boustani, M. (2013) Evaluation of the Surface Climatology over the Conterminous United States in the North American Regional Climate Change Assessment Program Hindcast Experiment Using a Regional Climate Model Evaluation System. Journal of Climate, 26, 5698-5715. http://dx.doi.org/10.1175/JCLI-D-12-00452.1

[57]   Shulski, M. and Wendler, G. (2007) The Climate of Alaska. University of Alaska Press, Fairbanks, p. 216.

[58]   Bao, J.W., Michelson, S.A., Persson, P.O.G., Djalalova, I.V. and Wilczak, J.M. (2008) Observed and WRF-Simulated Low-Level Winds in a High-Ozone Episode during the Central California Ozone Study. Journal of Applied Meteorology and Climatology, 47, 2372-2394.
http://dx.doi.org/10.1175/2008JAMC1822.1

[59]   Tran, H.N.Q. and Molders, N. (2011) Investigations on Meteorological Conditions for Elevated PM2.5 in Fairbanks, Alaska. Atmospheric Research, 99, 39-49.
http://dx.doi.org/10.1016/j.atmosres.2010.08.028

[60]   Loughner, C.P., Tzortziou, M., Follette-Cook, M., Pickering, K.E., Goldberg, D., Satam, C., Weinheimer, A., Crawford, J.H., Knapp, D.J., Montzka, D.D., Diskin, G.S. and Dickerson, R.R. (2014) Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export. Journal of Applied Meteorology and Climatology, 53, 1697-1713. http://dx.doi.org/10.1175/JAMC-D-13-0323.1

[61]   Simpson, C.C., Pearce, H.G., Sturman, A.P. and Zawar-Reza, P. (2013) Verification of WRF Modelled Fire Weather in the 2009-10 New Zealand Fire Season. International Journal of Wildland Fire, 23, 34-45.

[62]   Molders, N., Raabe, A. and Tetzlaff, G. (1996) A Comparison of Two Strategies on Land Surface Heterogeneity Used in a Mesoscale β Meteorological Model. Tellus, 48, 733-749.
http://dx.doi.org/10.1034/j.1600-0870.1996.00012.x

[63]   Giorgi, F. and Avissar, R. (1997) Representation of Heterogeneity Effects in Earth System Modeling: Experience from Land Surface Modeling. Reviews of Geophysics, 35, 413-438.
http://dx.doi.org/10.1029/97RG01754

[64]   Hines, K.M., Bromwich, D.H., Bai, L.S., Barlage, M. and Slater, A.G. (2010) Development and Testing of Polar WRF. Part III: Arctic Land. Journal of Climate, 24, 26-48.
http://dx.doi.org/10.1175/2010JCLI3460.1

[65]   Jacobson, M.Z. (2007) Fundamentals of Atmospheric Modeling. Cambridge Press, Cambridge.

[66]   Friedrich, K. and Molders, N. (2000) On the Influence of Surface Heterogeneity on Latent Heat Fluxes and Stratus Properties. Atmospheric Research, 54, 59-85. http://dx.doi.org/10.1016/S0169-8095(99)00050-2

[67]   Smith, S.A., Vosper, S.B. and Field, P.R. (2012) Sensitivity of Orographic Precipitation Enhancement to Horizontal Resolution in the Operational Met Office Weather Forecasts. Meteorological Applications. http://dx.doi.org/10.1002/met.1352

[68]   Ebert, E.E., Damrath, U., Wergen, W. and Baldwin, M.E. (2003) The Assessment of Short-Term Quantitative Precipitation Forecasts. Bulletin of the American Meteorological Society, 84, 481-492. http://dx.doi.org/10.1175/BAMS-84-4-481

[69]   Groisman, P.Y. and Legates, D.R. (1994) The Accuracy of United States Precipitation Data. Bulletin of the American Meteorological Society, 75, 215-227.

[70]   Dingman, S.L. (1994) Physical Hydrology. MacMillan College Publishing Company, New York, 575p.

[71]   Tang, R., Liu, D., Han, G., Ma, Z. and De Young, B. (2014) Reconstructed Wind Fields from Multi-Satellite Observations. Remote Sensing, 6, 2898-2911. http://dx.doi.org/10.3390/rs6042898

[72]   PaiMazumder, D., Henderson, D. and Molders, N. (2012) Evaluation of WRF-Forecasts over Siberia: Air Mass Formation, Clouds and Precipitation. The Open Atmospheric Sciences Journal, 6, 93-110. http://dx.doi.org/10.2174/1874282301206010093

[73]   Molders, N. and Kramm, G. (2010) A Case Study on Wintertime Inversions in Interior Alaska with WRF. Atmospheric Research, 95, 314-332. http://dx.doi.org/10.1016/j.atmosres.2009.06.002

[74]   Zhao, Z., Chen, S.H., Kleeman, M.J. and Mahmud, A. (2011) The Impact of Climate Change on Air Quality-Related Meteorological Conditions in California. Part II: Present versus Future Time Simulation Analysis. Journal of Climate, 24, 3362-3376. http://dx.doi.org/10.1175/2010JCLI3850.1

[75]   Lawrence, D.M., Oleson, K.W., Flanner, M.G., Thornton, P.E., Swenson, S.C., Lawrence, P.J., Zeng, X., Yang, X.L., Levis, S., Sakaguchi, K., Bonan, G.B. and Slater, A.G. (2011) Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model. Journal of Advanced Modeling of Earth Systems, 3, Published Online.
http://dx.doi.org/10.1029/2011MS000045

[76]   Avissar, R. and Pielke, R.A. (1989) A Parameterization of Heterogeneous Land Surface for Atmospheric Numerical Models and Its Impact on Regional Meteorology. Monthly Weather Review, 117, 2113-2136. http://dx.doi.org/10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2

[77]   Zhong, S., In, H., Bian, X., Charney, J., Heilman, W. and Potter, B. (2005) Evaluation of Real-Time High Resolution MM5 Predictions over the Great Lakes Region. Weather Forecasting, 20, 63-81. http://dx.doi.org/10.1175/WAF-834.1

[78]   Kinnison, D.E., Brasseur, G.P., Walters, S., Garcia, R.R., Marsh, D.R., Sassi, F., Harvey, V.L., Randall, C.E., Emmons, L., Lamarque, J.F., Hess, P., Orlando, J.J., Tie, X.X., Randel, W., Pan, L.L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U. and Simmons, A.J. (2007) Sensitivity of Chemical Tracers to Meteorological Parameters in the MOZART-3 Chemical Transport Model. Journal of Geophysical Research: Atmospheres, 112, Published Online. http://dx.doi.org/10.1029/2006JD007879

[79]   Pryor, S.C., Nielsen, M., Barthelmie, R.J. and Mann, J. (2003) Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? Part II: Quantifying Uncertainties Associated with Distribution Fitting Methods. Journal of Applied Meteorology, 43, 739-750.
http://dx.doi.org/10.1175/2096.1

 
 
Top