JMMCE  Vol.2 No.5 , September 2014
Effects of Alkaline Additives on the Thermal Behavior and Properties of Cameroonian Poorly Fluxing Clay Ceramics
ABSTRACT
Ball clay and alkaline feldspars (syenite and nepheline syenite) were mixed with red kaolinite clay (rich in iron oxides but poor in fluxing oxides) and fired (1000°C - 1200°C) in order to improve certain characteristics of the obtained ceramics. The thermal behavior of the mixtures was monitored via Young modulus whereas linear shrinkage, water absorption, bulk density, flexural strength, microstructure and crystalline phases of fired products were examined. In the case of red clay-ball clay mixtures, the amount of mullite or cristobalite increased with heating temperature and the amount of additive, whereas the temperature at which there is an important sintering decreased with the increase of additive. In the ceramics produced from the mixtures of red clay-alkaline additive, contrary to mullite, the amount of cristobalite decreased with both the amount of additive and heating temperature. Also in the data of Young modulus, there was a decrease of temperature assigned to the beginning of densification. Additionally, incorporating at least 15% of alkaline additive to red clay and heating between 1050°C and 1200°C leads to ceramics with low water absorption (0.70% to 0.25%). However when using the same amount of additive and heating the mixtures at the same temperature, ceramics produced from nepheline syenite were denser than those obtained from syenite. Addition of ball clay or alkaline feldspars to kaolinite clay containing great amount of iron oxides and low fluxing oxides allows getting compact ceramics at reduced temperature.

Cite this paper
Elimbi, A. , Dika, J. and Djangang, C. (2014) Effects of Alkaline Additives on the Thermal Behavior and Properties of Cameroonian Poorly Fluxing Clay Ceramics. Journal of Minerals and Materials Characterization and Engineering, 2, 484-501. doi: 10.4236/jmmce.2014.25049.
References
[1]   Capitaneo, J.L., Da Silva, F.T., Vieira, C.M.F. and Monteiro, S.N. (2005) Reformulation of Kaolinitic Body for Extruded Floor Tiles with Phonolite Addition. Silicates Industriels, 70, 161-165.

[2]   Sumer, G.A. (1998) A Search on Pyrometric Cones. Industrial Ceramics, 18, 167-168.

[3]   Elimbi, A. (2004) Etude du comportement thermique et des produits de cuisson des argiles kaolinites de Bomkoul. Effets de l’incorporation des adjuvants minéraux locaux. PhD Thesis, University of Yaoundé I, Yaoundé.

[4]   Elimbi, A. and Njopwouo, D. (2002) Firing Characteristics of Ceramics from the Bomkoul Kaolinite Clay Deposit (Cameroon). Tile and Brick International, 18, 364-369.

[5]   Milheiro, F.A.C., Freire, M.N., Silva, A.G.P. and Holanda, J.N.F. (2005) Densification Behavior of a Red Firing Brasilian Kaolinic Clay. Ceramics International, 31, 757-763.
http://dx.doi.org/10.1016/j.ceramint.2004.08.010

[6]   Andji, J.Y.Y., Abba, T.A., Jumas, G.J.C., Yvon, J. and Blanchart, P. (2009) Iron Role on Mechanical Properties of Ceramics with Clays from Ivory Coast. Ceramics International, 35, 571-577.
http://dx.doi.org/10.1016/j.ceramint.2008.01.007

[7]   Jouenne, C.A. (2001) Traité de céramiques et matériaux minéraux. Editions Septima, Paris,.

[8]   Ghoneim Sallam, N.E.H. and Ebrahim, D.M. (1990) Role of Accessory Minerals on the Vitrification of Whiteware Compositions. Ceramics International, 16, 19-24. http://dx.doi.org/10.1016/0272-8842(90)90058-N

[9]   Acchar, W., Dultra, E.J.V. and Segadaes, A.M. (2013) Untreated Coffee Husk Ashes Used as Flux in Ceramic Tiles. Applied Clay Science, 75-76, 141-147. http://dx.doi.org/10.1016/j.clay.2013.03.009

[10]   Kingery, W.D., Bowen, H.K. and Uhlmann, D.R. (1995) Introduction to Ceramics. John Wiley and Sons, New York.

[11]   Rogers, W.Z. (2003) Feldspar and Nepheline Syenite. Ceramic Engineering and Science Proceeding, 24, 272-283.

[12]   Elimbi, A., Lamilen, D., Chinje, U.M. and Njopwouo, D. (2005) Caractérisation chimico-minéralogique et comporte- ment thermique de trois matériaux feldspathiques camerounais utilisables comme fondants en céramique. Silicates In- dustriels, 70, 167-173.

[13]   Kamseu, E., Bakop, T., Djangang, C., Melo, U.C., Hanuskova, M. and Leonelli, C. (2013) Porcelain Stoneware with Pegmatite and Nepheline Syenite Solid Solutions: Pore Size Distribution and Descriptive Microstructure. Journal of the European Ceramic Society, 33, 2775-2784.
http://dx.doi.org/10.1016/j.jeurceramsoc.2013.03.028

[14]   Njoya, A., Ekodeck, G.E., Nkoumbou, C., Njopwouo, D. and Tchoua, M.F. (2001) Matériaux argileux au Cameroun: Gisements et exploitation. Proceeding of the 1st Conference on the Valorization of Clay Materials in Cameroon, Yao- undé, 11-12 April 2001, 12-30.

[15]   Nibambin, S.S. (2003) Influence des ions fer sur les transformations thermiques de la kaolinite. Ph.D. Thesis, Univer- sity of Limoges, Limoges.

[16]   Traoré, K., Blanchart, P., Jernot, J.P. and Gomina, M. (2007) Caractérisation physicochimique et mécanique de matériaux obtenus à partir d’une argile kaolinite du Burkina Faso. Comptes Rendus de Chimie, 10, 511-517. http://dx.doi.org/10.1016/j.crci.2006.12.009

[17]   Pialy, P., Nkoumbou, C., Villiéras, F., Razafitianamaharavo, A., Barres, O., Pelletier, M., Ollivier, G., Bihannic, I., Njopwouo, D., Yvon, J. and Bonnet, J.P. (2008) Characterization for Industrial Applications of Clays from Lembo Deposit, Mount Bana (Cameroon). Clay Minerals, 43, 415-435.
http://dx.doi.org/10.1180/claymin.2008.043.3.07

[18]   Xiao, Z., Ling, T.C., Poon, C.S., Kou, S.C., Wang, Q. and Huang, R. (2013) Properties Wall Blocks Prepared with High Percentages of Recycled Clay Brick after Exposure to Elevated Temperatures. Construction and Building Materials, 49, 56-61. http://dx.doi.org/10.1016/j.conbuildmat.2013.08.004

[19]   Gencel, O., Sutcu, M., Erdogmus, E., Koc, V., Cay, V.V. and Gok, M.S. (2013) Properties of Bricks with Waste Ferrochromium Slag and Zeolite. Journal of Cleaner Production, 59, 111-119.
http://dx.doi.org/10.1016/j.jclepro.2013.06.055

[20]   Sokolar, R., Vodova, L., Grygarova, S., Stubna, I. and Sin, P. (2012) Mechanical Properties of Ceramics Bodies Based on Calcite Waste. Ceramics International.

[21]   SNH/UD (2005) Stratigraphie séquentielle et tectonique des dépôts mésozoïques syn-rifts du bassin de Kribi /Campo. Rapport non publié.

[22]   Njopwouo, D. (1984) Minéralogie et physico chimie des argiles de Bomkoul et de Balengou (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caoutchouc naturel. Ph.D. Thesis, University of Yaoundé, Yaoundé.

[23]   Regnoult, M. (1986) Synthèse géologique du Cameroun. DMG, Yaoundé.

[24]   Lamilen, B.D., Moundi, A., Moupou, M. and Minnyem, D. (1998) Contrôle structural du socle dans la morphologie du massif anorogénique du Koupé (lignes du Cameroun). Geosciences au Cameroun, 1, 191-196.

[25]   Huger, M., Fargeot, D. and Gault, C. (2002) High-Temperature Measurement of Ultrasonic Wave-Velocity in Refractory Materials. High Temperatures, High Pressures, 34, 193-201.
http://dx.doi.org/10.1068/htwu115

[26]   Norme Française NF-P-18-554 (1979) Mesures des masses volumiques, porosité, coefficient d’absorption d’eau et en teneur en eau des gravillons et cailloux. Décembre.

[27]   Norme Européenne EN-100 (1982) Détermination de la résistance à la flexion. Octobre 1982.

[28]   Brindley, G.W. and Brown, G. (1980) Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London.

[29]   Aliprandi, G. (1966) Matériaux refractaires et céramiques techniques. Edition Septima, Paris.

[30]   Suasmoro, S., Smith, D.S., Lejeune, M., Huger, M. and Gault, C. (1992) High Temperature Ultrasonic Characterization of Intrinsic and Microstructural Change in Ceramic YBa2CU3O7-δ. Journal of Materials Research, 7, 1629-1635. http://dx.doi.org/10.1557/JMR.1992.1629

[31]   Castelein, O. (2000) Influence de la vitesse du traitement thermique sur le comportement d’un kaolin: Application au frittage rapide. Ph.D. Thesis, Université de Limoges, Limoges.

[32]   Chakraborty, A.K. (1992) Supplementary Alkali Extraction Studies of 980°C Heated Kaolinite by X-Ray Diffraction Analysis. Journal of Materials Science, 27, 2075-2082. http://dx.doi.org/10.1007/BF01117920

[33]   Kristofferson, A., Ekberg, J., Leandersson, H. and Carlson, R. (1993) High-Strength Triaxial Porcelainized Stoneware. International Ceramics Journal, 10, 99-103.

[34]   Normes Camerounaises NC-2 (2010) Norme de description. Brique de terre cuite: Désignation et classification.

[35]   Elimbi, A., Founyapté, S. and Njopwouo, D. (2004) Effets de la température de cuisson sur la composition minéralogique et les propriétés physiques et mécaniques de deux matériaux du gisement argileux de Bakong (Cameroun). Annales de Chimie, Science des Matériaux, 29, 67-77.
http://dx.doi.org/10.3166/acsm.29.2.67-77

[36]   Salem, A., Jazayeri, S.H., Rastelli, E. and Timellini, G. (2009) Dilatometric Study of Shrinkage during Process for Porcelain Stoneware Body in Presence of Nepheline Syenite. Journal of Materials Processing Technology, 29, 124-126.

 
 
Top